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Recent studies indicate a significant rise in the prevalence of malicious software (malware), 

which has become a cause for concern. It has been observed that certain types of malware 

possess the ability to hide within computer systems by employing diverse obfuscation 

methods. It is crucial to recognize malware before a large number of systems are infected 

with it in order to protect computers and the Internet from harm. In recent years, there have 

been several investigations conducted on strategies for detecting malware. Despite this fact, 

the issue of identifying malware continues to be challenging. When it comes to finding 

previously identified malware, signature-based and heuristic-based detection approaches 

perform well. However, it should be noted that signature-based detection methods are not 

capable of detecting unknown malware. However, it should be noted that behavior-based, 

model checking-based, and cloud-based methods have shown effectiveness in dealing with 

unfamiliar and intricate malware. Additionally, there is a growing trend in utilising deep 

learning-based, mobile device-based, and IoT-based techniques to identify both known and 

unknown malware. Nonetheless, it is impossible for any technique to identify all forms of 

malicious software available.  

This clearly illustrates the immense challenge of creating a reliable approach for identifying 

malware, highlighting the pressing demand for original research and methodologies.  

This thesis offers an extensive examination of various techniques for detecting malware and 

the recent methodologies that utilise these techniques. In order to assist researchers in 
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acquiring a broad comprehension of malware detection methods, their advantages and 

disadvantages, and the optimal means of achieving optimal outcomes, we have identified the 

most efficient protocol. 

Keywords: Malware Detection Approaches, Malware Features, Internet of Things, 

Machine Learning, Deep Learning. 
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1. INTRODUCTION

1.1 INTRODUCTION 

Using the Internet in our daily lives. The reason for this is that it is extremely difficult to 

complete any task without the use of the Internet. The Internet is essential for various 

activities such as social interactions, online finance, health-related transactions, and 

marketing, among others. As a result of the Internet's exponential growth, criminals have 

shifted their focus to committing online crimes instead of engaging in physical offences. 

Criminals often utilise malicious software to launch cyberattacks on targeted computers. 

Malware is a type of software that intentionally carries out harmful actions on targeted 

devices such as computers, smartphones, computer networks, and so on. A wide range of 

malicious software types can be found, encompassing viruses, worms, Trojan horses, 

rootkits, and ransomware. Every variety and category of malware is specifically crafted to 

impact the initial target device in a distinct manner, such as inducing harm to the system, 

enabling remote code execution, pilfering confidential information, and so on. Certain types 

of malware have the ability to exhibit traits found in various classifications. In an era where 

malware is becoming more complex, it is becoming progressively challenging to classify it. 

In the past ten years, the number of cyberattacks has exploded. The significance can be 

confirmed by the frequency with which cyber attack incidents are reported in global news 

stories. The causes are twofold: increasing numbers of individuals and businesses hold social 

gatherings and conduct business transactions digitally, and the emergence of attack 

generation toolkits that make cyber attacks easier to execute. Malicious software, also known 

as malware, is one of the primary causes of daily cyber attacks. 

Malware remains one of the most significant cybersecurity concerns today [1, 2]. According 

to the 2018 Cybersecurity Threat Report [3] from Symantec: In 2017, the number of malware 

variants detected reached a staggering 669 million, which represents a significant surge of 

87.7 percent compared to the previous year. The number of new variants of malware 

targeting mobile devices, like cell phones, has experienced a surge of around 55%, rising 

from 17,000 to 27,000. As a result of the advancement and extensive acceptance of IoT 

technology, there has been a significant surge in malware infections impacting IoT devices 

in recent years.  
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According to the report, there has been a significant rise of around 600% in malware variants 

targeting IoT devices in recent years. As depicted in Figure 1, it poses a significant risk to 

the presently available IoT device ecosystem. 

The public, enterprises, and national security are gravely jeopardized by the rising 

prevalence of malware. 

Figure 1.1: Total Malware Increasing [4]. 

It's a threat to people's privacy and the stability of computer networks. Malware intrusions 

may have serious repercussions, such as the theft of sensitive information or the shutting 

down of essential services. To counter malware-based assaults, defense mechanisms need to 

detect and eliminate infected host machines and network traffic.  

1.2 PROBLEM STATEMENT 

As computing technology continues to advance, the ability to hide malware attacks from 

detection becomes increasingly easier and more compact. The severity of unconventional 

malware in relation to the tools and techniques for analysis and detection is uncertain.  
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The evaluation of current techniques for detection and protection, along with the analysis 

and reverse engineering of malware methods, is necessary. In order to effectively and 

efficiently detect and mitigate emerging and unconventional malware threats, it is crucial to 

have a reliable detection mechanism in place. 

1.3 MALWARE IN IOT DEVICES 

The Internet of Things (IoT) refers to a network of interconnected devices and systems that 

have the ability to communicate independently [5]. The IoT environment is advantageous 

and convenient for consumers. Given that a significant number of IoT devices are linked to 

the internet, they become an appealing target for advanced malware. As per a report from 

HP, it has been found that approximately 70% of Internet of Things devices are susceptible 

to potential attacks due to weaknesses in password security and encryption [6]. Ransomware 

is one of the most prevalent types of malware severe hazards to IoT device security. the 

Ransomware can primarily encrypt and disable the fundamental functions of IoT devices. 

IoT Ransomware can primarily encrypt and disable the core functionality of IoT devices. 

Zhang-Kennedy et al. The authors of the ransomware emphasized that it will predominantly 

encrypt and disable the fundamental functions of IoT devices. The primary objectives of the 

study were to determine the IoT attack vectors, self-spreading techniques of IoT 

ransomware, and the specific IoT application class that is most susceptible to ransomware 

attacks. The techniques for encrypting Internet of Things devices have been identified by the 

authors. 

Malicious software, commonly known as malware, is any piece of software designed to do 

harm to its user. All of these and other malicious programs are together referred to as 

malware. The perpetrator's motivation is no longer to steal data or cause system outages. In 

the present day, the malware industry has become an incredibly lucrative field. 

Various techniques, including as encryption, binary packers, and self-modifying code, are 

used by malware developers to avoid being identified by malware classifiers. Based on the 

approach used to analyze code, malware detection methods are often divided into two 
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categories: static analysis and dynamic analysis. The static analysis aims to gather details 

regarding the organisation and substance of the document. 

According to sources [8, 9], malicious software refers to any software that disrupts machine 

operations, gathers sensitive data, or breaches private computer systems. Cybercriminals 

develop malware with the intention of achieving particular objectives. The objectives listed 

in the source may involve acquiring confidential information, gathering login details and 

credentials, distributing unsolicited emails, initiating Denial of Service attacks, engaging in 

extortion, and committing identity theft [9]. According to sources, cybercriminals have been 

utilising Crypto Locker as a means to infect and encrypt files on computers. This malicious 

software is then used to demand a ransom in exchange for decrypting the files [10].  

1.4 THE ADVANCEMENT OF MALWARE 

On the basis of the time period during which it emerged, malware evolution is typically 

divided into five phases. The earliest aspect of malware is when it first appeared. The second 

stage of malware development saw the introduction of Windows and email attacks. The 

Internet entered its third stage after its development. Network viruses become the most 

widespread danger with the introduction of the Internet. The most dangerous forms of 

malware, such as rootkits and ransomware, emerged in the fourth stage of development. The 

final stage of malware development encompasses the production of espionage malware 

purposes by the secret services of certain nations [11]. 

Figure 1.2: Timeline of The Five Phases of Malware Advancement [12]. 
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1.4.1 Initial Development Stages of Malware (1949-1991) 

Malware poses a substantial risk to the digital realm at present. The original intention of 

malware was not to cause harm, steal, or manipulate, but it has now become a threat to the 

security and safety of our society. In this section, we will examine some of the earliest forms 

of malware. In 1949, John Von Neumann coined the term "self-replicating string of code" to 

describe the first virus. He devised a "self-reproducing automata" that was capable of 

generating a new variant on its own [13]. 

It was utilized primarily to highlight vulnerabilities in MS-DOS systems. As a result of the 

utilization of system resources, the malware's payload in this phase was a transient system 

crash.  

In this phase, viruses and worms have spread via infected floppy drives or the ARPANET. 

Fred Cohen formulated the generally idea of  computer virus is defined as "a program that 

can infect other programs by modifying them to include a possibly evolved copy of itself" 

[14]. 

1.4.2 The Second Stage of Malware Creation (1992-1999) 

As a result of Windows' user interface's simplicity and power, Hackers and perpetrators 

evolved into intrigued  the operating system Windows. Windows PCs were the primary 

target of malware during this time period. The history of Windows malware, early email 

worms, and macro worms are all chronicled here. Anti-virus software was also created 

around this time. In 1992 [15], WinVir was released as the first Windows malware. It was 

malware, and it did very little damage to victim files as it copied itself [16]. Furthermore, in 

1992, a virus known as V-sign attacked the boot sector, attempting to deactivate the machine 

by displaying a V-sign on the screen [17]. 

1.4.3 The Third Stage in The Development of Malware (2000-2008) 

The broad use of the Internet marked the beginning of the third generation of malicious 

software. This is the early life cycle phase of several illnesses, including network worms. 

During this time period, malicious software was most often spread by phished email 

attachments, free malware downloads from malicious websites, and unsecured shared drives 

on a local area network. The Morris worm was able to spread widely in the early days of the 
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Internet because security was not a top focus. The goal of any Internet worm is to spread to 

every unprotected machine it can find on a network using a scanning algorithm. It starts by 

wreaking havoc on the system, and then it tries to expand outward from that point [18]. 

1.4.4 The Fourth Stage of Malware (2005-2016) 

Rootkits and ransomware appear in the fourth stage. In the final stage, users are infected 

with malware using a variety of vectors include emails, remote desktop protocols, 

compromised website downloads, USB drives, and other external media. At this point in 

malware development, the major motivation was financial gain or unauthorized exploitation 

of infiltrated computers. A rootkit is a software that secretly takes over an operating system 

in order to steal information from the infected machine. Rootkits stand out from other 

malware because of their stealthy nature, whereas viruses and nematodes are classified 

according to their capacity to multiply. Rootkits seek to conceal the presence of an attacker 

on an infected system [19]. 

1.5 MALWARE SUBTYPES 

Malware is an acronym for malicious software, which refers to any software that is intended 

to cause harm to the user. The issue with each definition of malware is that they are overly 

general and lack rigor. Malicious activities may include interfering with the operation of a 

computer, gathering sensitive data, or gaining illicit access to a computer system or network. 

The classification of malware can consider the purpose or functionality of the malware. 

However, it may not be feasible to classify malware based on its functionality, as malware 

can possess a wide range of functions. Malware, for example, has the ability to mimic a 

worm by scanning the network and exploiting vulnerabilities. It can also obtain other forms 

of malware, like a backdoor [20]. The subsequent categories of malware are not 

incompatible, and their sole purpose is to acquaint the reader with the various malware 

categories. 

a. Backdoor: It is categorized as a Trojan horse and grants the perpetrator system access

and command execution.

b. Bot: Enables a hacker (known as the botmaster) to manage the compromised system

remotely. A botnet is a linked network of bots that are remotely managed by a botmaster

using control and command (C&C) software [21]. Common bad botnet behavior includes
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Distributed Denial-of-Service (DDoS) assaults, spyware use, spam email distribution, 

and virus distribution. 

c. Downloader The injector has been created to acquire and deploy more malware or

malicious components.

d. Ransomware, also known as malware, is a type of malicious software that has the ability

to freeze the screen of the targeted individual and encrypt various file formats commonly

used, including but not limited to .xsl, .docx, .txt, .sql, .jpg, .cpp, and .mp3. Elliptic curve

cryptography, RSA, and AES are the most used encryption transformations.The culprit

requests payment (often in Bitcoin [22]  in return for the decryption key.

e. Rootkit: It modifies the operating system in order for a rival to retain administrator

access. Rootkits can be identified by their capacity to hide their existence or that of other

malicious software [23].

f. Spyware: Retrieves and sends sensitive information via the victim's device to the

offender. Examples include credit card numbers, passwords, a record of websites visited,

emails, and various documents. such sensitive information , A key logger is an example

of spyware because it records keystrokes and sends them to the perpetrator. A sniffer

that monitors Internet traffic is a second example of spyware [24].

g. Trojan horse: It masquerades as benign software while performing malicious actions But

it does the opposite [ 25].

h. Virus: is malicious software which is connected to a host. When a host that is infected

its executes itself, the virus becomes active, performs malicious actions, and propagates

to rest of computers. [26].

i. Worm: resembles a virus, However, its activation doesn't need an installation file or

human intervention. A worm is capable of self-replication and spreading across other

computers [27].

Rootkits and ransomware are favored by cybercriminals due to their efficacy for 

accomplishing their objectives (such as obtaining system access) and because, in the scenario 

of rootkits, they may conceal to prevent detection by employing hard-to-detect modification 

techniques. The majority of the time, cybercriminals install rootkits after gaining root or 

administrative privileges. Obtaining administrative or root access to a system requires a 

direct attack on the system. 
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Potentially Unwanted Programs (PUP) are a form It is a kind of software that exists among 

malicious and secure files. There may be uncertainty regarding the intent of PUP, or for 

certain users, the potential advantage might outweigh the potential harm. 

Figure 1.3: The Number of Malware Type Which it Detected by Microsoft AV [28]. 
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1.6 CYBER ATTACKS CAUSED BY MALWARE 

A cyber-attack is any act or attempt to obtain unauthorized access, whether successful or 

unsuccessful. Stuxnet, a worm with rootkit capabilities discovered for the first time in 2010 

[29], is a well-known cyberattack induced by malware. 

Similar to Stuxnet, numerous malware have and continue to target industrial control systems. 

Shamoon [30] and Dragonfly [31, 32] are examples. Alureon and Game Over Zeus are 

additional examples of such malware. Alureon, which is also referred to as TDL, is a trojan 

with rootkit capabilities that was initially detected in 2008. The purpose of this programme 

was to extract data by intercepting the network traffic of a system. Its main objective was to 

locate and retrieve sensitive user information, including banking login credentials, credit 

card details, and social security numbers. 

1.7 MALWARE OBFUSCATION TECHNIQUES 

Malware authors frequently modify malware in order To render detection harder. The 

methods mentioned are commonly known as encryption techniques, which are employed to 

hide malware from analysts specialising in malware and engineers specialising in reverse 

engineering. These methods effectively bypass detection systems that rely on signatures. 

Numerous layers, including code, an instruction sequence, and binary, are susceptible to 

obfuscation. In the following paragraphs, we will discuss some techniques which render 

malware detection more challenging. Most common methods include compression, 

encryption, polymorphism, and metamorphism. 

The procedure of hiding a file that is executable using compression (one or more layers) is 

known as packing. This process generates a new executable file that may be used to store 

encoded data. To go back to the original file (or source code), a decompression process must 

be used. 

Encryption: Is comparable to compression, but encryption is utilized in place of 

compression. Malware that is encrypted and compressed must include a Software for 

encoding that can be utilized for detection based on signatures. 

Polymorphism: it uses encryption, and the decryptor mechanism is also mutated, which 

eliminates the need for a signature. However, the decryption of polymorphic malware is 
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necessary, and the detection process can utilise the original (non-obfuscated) code through 

the implementation of signatures. 

Metamorphism: Malware authors' most sophisticated and challenging obfuscation 

technique. While retaining its original functionality, malware with a metamorphic 

framework changes its internal framework. 

Packaging as well as encryption are two widely used methods for avoiding detection based 

on signatures and static analysis. Malware that is polymorphic or metamorphic can alter its 

code after every iteration. When this type of malware runs, it may be re-obfuscated in order 

to evade detection based on signatures.  

1.8 TRADITIONAL MALWARE AND NEW GENERATION 

Throughout history, malware has been crafted with clear-cut intentions, which has facilitated 

its identification process. This particular form of malware is commonly referred to as 

traditional (fundamental) malware. Malware that operates in kernel mode and possesses 

greater destructive capabilities and detection evasion compared to conventional malware is 

The term "next-generation malware" is presently used to describe this type of malicious 

software. This malware has the capability to evade kernel-mode security tools like firewalls, 

antivirus programmes, and so on.Traditional malware generally consists of a solitary process 

and does not employ intricate methods to conceal its presence. The malware in its latest 

version, however, utilises various pre-existing or original methods. The malware operates 

simultaneously and employs methods of obfuscation to hide its presence and remain in the 

system. Never-before-seen destructive attacks, such as targeted and persistent, can be 

launched by malware of the new generation, and multiple types of malware are used in these 

attacks.  

Table 1 displays a comparison between traditional and novel generations of malware. 
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Table 1.1: Traditional Versus New Generation Malware [33]. 

Comparison Parameters Traditional New Generation 

Implementation Level Simple Coded Hard Coded 

State of Behavior Static Dynamic 

Proliferation Each Copy is Similar Each Copy Is Different 

Through Spreading Use .exe  Extension Use Also Different Extension 

Permanence on the System Temporal Persistent 

Interaction with Processes A Few Process Multiple Process 

Use Concealment Technique None Yes 

Attack Type General Targeted 

Defensive Challenge Easy Difficult 

Targeted Devices General Computer Many Different Devises 

1.9 MLWARE DETECTION TECHNIQUE AND ALGORITHM 

Datamining and machine learning (ML) In recent years, malware detection has made 

extensive use of algorithms. Malware detection is a method of examining the data of a 

software program in order to determine if it contains malware, to know if it is malicious or 

benign. Malware analysis, feature extraction, and classification are the three steps of the 

malware detection procedure. 

a. Malware Analysis

Malware analysis techniques are primarily static and dynamic [34]. Malware is examined 

via static analysis without executing the actual code [35]. In contrast, The dynamic analysis 

of malware investigates its actions while its software is running. The examination of 

malware begins with fundamental static analysis and concludes with advanced dynamic 

analysis. Malware is analyzed via reverse engineering [36] and a number of other malware 
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analysis tools that represent the malware in various formats. format. Reverse engineering 

process can be seen in Figure 4. 

Figure 1.4: A Flow Chart of Reverse Engineering Process [37]. 

b. Malware Feature Extraction

The characteristics of malware are extracted using data mining techniques. Large datasets or 

databases are mined for previously obscure, novel, and significant information. Using 

datamining, novel models and datasets have been constructed in recent years,Various 

models, such as the n-gram and graph models, are utilized for the creation of malware 

datasets and features. 

c. Malware Classification

Machine learning (ML) refers to a collection of algorithms that can reliably anticipate the 

results of applications without being specifically designed to do so. Using statistical analysis, 

the Machine Learning aims for transform the data supplied into valid value intervals. 

Machine learning (ML) may perform a number of tasks on the linked data, including 

classification, regression, and grouping. For a long time now, ML algorithms have been used 

effectively in the identification of malware [38]. The Bayesian network, naive Bayes, C4.5 

variation decision tree, logistic model tree, random forest tree, k-nearest neighbor, multilayer 
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perceptron, simple logistic regression, support vector machine, and sequential minimum 

optimisation methods are all examples of popular ML techniques. Particularly, behavior-

based detection and other forms of detection make use of these techniques. However, each 

algorithm has its own strengths and weaknesses. 

1.10 OUTLINE OF THESIS 

The whole project is divided into the following five chapters: 

Chapter One: provides A brief overview of malware before discussing the problem statement 

and objectives. The development of malware through the years, Types of Malware, malware-

based cyberattacks This thesis employs Malware Obfuscation Techniques, traditional 

malware and new generation, Technique And Algorithm. 

Chapter Two: Presented the theoretical portion and additional information regarding the 

thesis and related work. 

Chapter Three: introduced the research methodology and procedures for obtaining the 

outcome results. 

Chapter Four: This section contained the simulation configuration and a discussion of the 

project's results. 

Chapter Five: Included completion and prospective work. 
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2. OVERVIEW

2.1 INTRODUCTION 

This section provides a thorough overview of the thesis's context. Firstly, an overall 

description of malware is provided and malware detection, it will explain some comparisons 

between different kind of them. The final section will focus on the most possible future 

obstacles to malware detection. Finally, discuss significant work that is related. 

2.2 DESCRIPTION OF MALWARE 

Malware, short for "malicious software," is any program or file that is intentionally harmful 

to a computer, network, or server. Malware can be designed to cause damage to a stand-

alone computer or a networked PC. Its goal is to compromise, destroy, or render useless a 

target system or device, including but not limited to personal computers, servers, networks, 

tablets, and mobile phones. Malicious software may be installed on a computer without the 

user's knowledge or permission and used to steal data, encrypt it, erase it, or change or hijack 

essential computer operations, or even spy on user behavior. Computer viruses, worms, 

Trojan horses, ransomware, spyware, adware, and phony security programs are only few 

examples of malware. When disseminating malware that infects devices and networks, 

cybercriminals use a wide range of techniques. Malware detection is crucial for maintaining 

computer security and protecting against potential threats [39]. 

2.3 TAXONOMY OF MALWARE 

Malware can be classified based on various characteristics, but typically it is categorised 

according to its family type. The classification of malware files takes into account naming 

patterns [41] associated with them. Due to the rapid growth of malware, it made sense to 

revise the original terminology convention to reflect its rapid evolution. 

The standard name an original bit of malware typically consists from four components, it 

shown in Figure (2.1). 
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Figure 2.1: Naming Standard for Malware [40]. 

Type and Family are the relevant portions of the appellation, as they provide the broad 

distinctions between categories. Malware is classified by Type when the malware's 

behavior and effect on the victim system are taken into account.  

Examples include: 

a. Backdoor: installed on the victim's computer, granting remote administration to the

perpetrator.

b. Botnet: similar to a (back door), however the victim device is part from the network of

compromised computers connected to a (command-and-control server);

c. Downloader: precursor coding that downloads additional malicious code;

d. Information-stealing malware: coding that extracts information (such as financial

credentials) from the computer of the victim and sends it to a designated source.

e. Launcher: utilized to launch other malicious programs via illegitimate means to preserve

anonymity.

f. Rootkit: software that provides unauthorized use of a computer and attempts to conceal

the presence of other malicious code.

g. Scareware: software that frequently mimics an anti-virus (AV) warning in order to

frighten ignorant users into acquiring malicious software.

h. Spam-sending malware: leads the targeted person computer to unwittingly transmit

spam.

i. Virus: self-replicating coding that may infect more computers but demands a host file.
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j. Worm: Malware that spreads itself through protocols used by networks.

k. Trojan: Malware that is typically disguised as harmless software and cannot spread on

itself, but grants entry to the victim's computer.

l. Ransomware: Malware that locks a victim's data and demands payment from the victim

person to decrypt them.

m. Dropper: Engineered to evade anti-virus scanning and containing additional malware

that is released from the initial code after installation. Malware frequently falls into

categories or uses multiple mechanisms, making it hard to create a distinct taxonomy

system [41] (McGraw and Morrison, 2000). Then, deferring to household the same as

the singular nominal attribute may offer an adequate description for cited malware. For

instance, well-known and highly developed cyberweapon (Stuxnet), that was utilized to

harm and damage the Iranian nuclear program, encompasses various malware groups.

The initial attacking vector was a USB drive contaminated with the worm module as well as 

a.lnk file pointing towards the worm by itself.  ( Stuxnet ) uses multiple weaknesses, One of

the those enables USB devices to automatically execute , link files, The worm module 

includes the payload routines, and a rootkit module conceals The illegal actions as well as 

protocols away from the consumer [42]. this is a complex attack, it may be challenging to 

precisely define the malware employing conventional methods. However, the family of 

variable permits an informative refer to entire malware. 

2.4 MALWARE RECOGNITION TECHNIQUES 

The development of methods for recognizing malicious resembles an effort to get to the 

bottom against malware authors. When antivirus companies utilize new methods for 

detecting malware, malware authors develop new techniques to evade detection. 

Figure 2.2 depicts a classification of prevalent malware methods for detection currently in 

utilize. The primary a wide range of investigation are described in the following section: 

2.4.1 Signature-Based 

By comparing the program's data to a library of known malicious code signatures, signature-

based detection may identify malicious software [43].  

It takes a lot of time and work to extract, store, and disseminate these sequences [45]. 
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Figure 2.2: Malware Detection Methods [44]. 

The construction of signatures is "slow and prone to error," according to experts from 

Symantec, a leading anti-virus company [46].  

In showing the results of their study on a computerized signature extract system, the 

researchers reported enhanced latencies of )1,278( min (>21 hours) for generating potential 

signatures using the data of 46,288 malevolent samples, and between 5 and 17 minutes for 

determining final signatures. The detection process is frequently carried out statically, which 

has the main drawbacks becoming ineffective toward unclear normal expressions as it is 

unable to find encrypted code to such sequences. it makes signature-based techniques less 

effective to the a wave of malware that is multiplying exponentially. 

2.4.2 Anomaly-Based 

Anomaly-based detection systems classify and form file or system behaviours, and 

deviations from these are labelled as anomalies [48]. 

The training phase generates a model that represents the typical behaviour or structure of the 

file or system. The monitoring stage then identifies deviations from the training starting 

points [49]. 

For instance, a tainted PDF's format may deviate significantly from that of a typical or 

anticipated PDF. In the same vein, a TV show file lasting one hour could be around 350 MB 
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in size. If the file size is smaller than 120KB, it may be considered suspiciousAnomaly 

detection has the notable benefit of being able to detect zero-day threats. Due to its reliance 

on common characteristics, the system is capable of detecting unusual traits without the need 

for prior knowledge of said traits. However, anomaly-based systems have limitations 

because they often produce false-positive ratings and require a significant number of features 

for effective system modelling through inspection [49]. 

2.4.3 Specification-Based 

Designed to address the issue of greater false-positive rates, the specification-based approach 

for detection is a close relative of anomaly detection. This detection technique focuses on 

the creation of the rule set that matches what the system needs instead of its execution [47]. 

 The appropriate modeling of massive system is a challenging endeavor, and it is  a result, 

specification-based detection may suffer from the same drawback as an anomaly-based 

system, namely that its model fails to accurately represent the behaviors of an intricate 

system.  

2.4.4 Static-Analysis 

Static analysis can be performed to the original code and the generated binary format [45]. 

The objective of the examination is to figure out the purpose of the program through 

examination of its structures data and code. 

Digest approximations of the executable and like (MD5) and (SHA1), may be compared to 

set of data containing previous identified malware hashes. Call the graphs can illustrate the 

software's design and the potential transfers among functions. According to a recent study 

(Namanya et al., 2015), URLs, IP addresses, command line arguments, Windows PE files, 

and passwords are all fair game for string analysis [49]. 

The primary benefit when utilizing static analysis methods is the fact that there is no danger 

from the sample of malware because it is never executed; therefore, it can be securely 

analyzed in depth. In contrast to static analysis, which examines the whole source code, 

dynamic analysis just looks at the currently running code [50]. 
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Testing all potential code paths may not always be advantageous since the disclosed details 

could consist of superfluous inactive code designed to conceal the actual purpose of the file. 

Against more sophisticated malware that may evade detection until the time it's activated, 

static analysis techniques are losing relevance. The true code is not always revealed [50]. 

by the hiding approach since the source code is never executed during static analysis. 

2.4.5 Dynamic Analysis 

In order to do a dynamic analysis, the file being looked at must first be implemented. To get 

over the limitations of static analysis introduced by different obfuscation schemes, 

approaches are used to extract information during memory access, runtime, and post-

execution. Conditions that could arise include: a) instances of plagiarism The host's 

operating system is used for the analysis, therefore there is no need to switch between 

computers for the process. Malware analysis is complicated due of the malware's impact on 

the host computer. Deep Freeze [51] (Faronics Corporation, 2018) is a software that offers 

a snapshot of the original native environment, which can be recovered following any 

malware activation (Faronics Corporation, 2018). According to Light et al. (2010), the 

process of restoring everything in the system to its original state can be quite time-consuming 

[52]. 

Another method is emulation, where the host uses software to imitate hardware and manage 

the visitor environment. The software's dependence on the host architecture might cause 

simulating to run slowly or not at all. c) simulated by a computer program; a virtual machine 

provides a separate, host-controlled environment for its processes to run in. In a perfect 

world, the heart of the situation would be exposed for everyone to see. Malware authors have 

responded by developing a wide variety of approaches to avoid detection, such as those that 

are anti-debugging, anti-instrumentation, and anti-Virtual Machine [53] (Bulazel and Yener, 

2017). One major drawback of dynamic techniques is the temporal complexity of execution, 

which arises from the need to execute the program for a certain amount of time [50]. 
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2.4.6 Hybrid-Analysis 

Hybrid methods' recognition algorithms combine static and dynamic analysis.  Roundy and 

Miller's (2010) research used processing approaches to statically examine potentially 

harmful code before to execution [54]. 

They focused on analysing  the code's framework and used dynamic processing for disguised 

code. The algorithm developed by the authors utilises a combination of dynamic and static 

techniques to analyse code, even when it is obfuscated. 

2.5 RELATED RESEARCH 

The present danger landscape caused by malware's rapid development. Although methods 

of detecting malware have been developed for many years, the increasing rates of infection 

suggest that the anti-malware environment is failing under the strain of swiftly evolving 

malware. As reported by Symantec (2018), infections with ransomware have steadily risen 

each year since 2015, reaching an all-time high of 1,271 per day in 2018. The following part 

examines the academic study conducted in the area so far, which has tried to offer solutions 

for the failings of present detection methods, and identifies the remaining obstacles. 

2.5.1 Malware Detection by Using Machine Learning 

Obfuscation techniques have posed significant challenges for identifying malware, and 

additionally from the point of view of consumer AV products. In the past, the evasion 

techniques employed by malware authors have hindered efforts to increase malware 

detection numbers. Throughout history, numerous scholars have explored the utilisation of 

data mining and machine learning techniques for the detection of malicious software in 

undisclosed datasets. [55]According to Schultz et al. (2001), the concept of utilising machine 

learning for analysing malware binary files was initially proposed by them. In this study, the 

findings of three machine learning classifiers (RIPPER, Nave Bayes, and Multi-Nave Bayes) 

were compared to a signature-based classification method known as AV scanner. The 

investigation focused on examining programme headers, string features, and byte sequence 

features. Typical AV scanner effectiveness was inferior to that of machine learning gets 

closer, with a pair of classifiers and characteristics tripling the device's accuracy. In their 

study, Kolter and Maloof (2004) [56] employed n-gram analysis on the hexadecimal 
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representation of executable malware files. Instead of utilising count or frequency, they 

opted for the Boolean characteristic of present or not present. Enhanced decision trees 

outperform other classifiers with an Area Under the ROC Curve of 0.996%. In a study 

conducted by Moskovitch et al. (2008) [57], the researchers examined the detection of 

imperceptible worms through the analysis of the computer's operating system's arrangement, 

background activity, and user-facing characteristics. The information gathered resulted in 

observations for 323 features per second, compared 5 worm types and a typical behavioral 

structure. With 20 characteristics, the average detection accuracy was greater than 90%, with 

detection of specific nematodes reaching 99%. 

2.5.2 Opcode-Analysis 

The most recent study on novel methods to detecting malware has centered on the execution 

behaviors of malware, i.e. what the software performs, instead of how it performs it, and the 

way this varies from the behavior of benign code. Operating codes (opcodes) are machine-

readable instructions used for database abuse, logical operations, and program flow control. 

O'Kane et al. (2014) [58] By analyzing the host environment's native opcodes at execution, 

it is possible to identify the existence of malware while avoiding encryption (O'Kane et al., 

2013) [59]. Santos et al. (2011) used n-gram models of opcodes in statically created datasets. 

Even though their study only looked at pairs of twos (n = 2), the researchers were able to get 

accuracy and F-measure rates higher than 85% by using ROC-SVM. Anderson et al. (2011) 

[60] used chains of Markov models to create dynamically created run-time traces that were

shown as weighted directed graphs. These graphs gave information about how likely it was 

that one opcode was being watched by another. The main purpose of the writers' study was 

to show that their method was better than n-gram models and signature-based recognition 

techniques. The data set had 1615 samples of malware and 615 examples of harmless 

programmes. However, the provided analyses lack information about the malware type, 

family, age, obfuscation, or size. This limitation greatly hinders the interpretability of the 

findings. The performance of nine AV scanners was compared to the n-gram feature 

selection method, which selects the topmost n-grams based on Information Gain ranking, as 

described by Kolter and Maloof (2004) [56].  

With a best accuracy of 73.32 percent, the AV algorithm performed worst of the three models 

tested. A total of 595 false negatives were recorded, while there were no false positives. With 
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300 FPs and 98 FNs, the best n-gram approach achieved an accuracy of 82.15%. The results 

showed that the Markov model was the most effective, with a success rate of 96.41%. 

Additionally, it recorded 47 false positives (FPs) and 33 false negatives (FNs). The authors 

note that the FN ranking may potentially be a result of sampling bias, as the dataset is skewed 

towards certain preferences. In their study, Runwal et al. (2012) [61] utilized graph 

techniques to analyze PE file operation codes, drawing inspiration from the previous work 

of Anderson et al. (2011) in the field of metamorphic malware. By leveraging similarity 

scores, the model successfully differentiated metamorphic malware from benignware, along 

with other similar families within the same category. According to O'Kane et al. (2013, 2014) 

[58] [59] , they have devised a technique to examine the utilization of opcodes in malware

detection using supervised machine learning approaches. By employing a hypervisor, 

specifically a virtual machine, the file under investigation was executed, allowing for the 

collection of run-time traces for both benign and malicious code files. By incorporating an 

operational layer onto the host machine's OS, this technique of virtualization facilitated the 

execution of unauthorized programs in a sanctioned environment, as observed by the 

researchers. The separation allowed for the successful implementation of the malware, 

ensuring efficient data acquisition while also isolating it from any potential impact the 

malware may have had on the hosting system. The execution trace of each investigated 

program was obtained using a debug program called Ollydbg and a masking utility known 

as StrongOD. The provided data includes a comprehensive record of each opcode and its 

corresponding operand, along with supplementary details such as the memory register's 

address. By employing a bespoke parser, the opcodes within this trace file were extracted, 

and the frequencies of their occurrences were calculated. To avoid introducing impact 

interactions caused by different run lengths, the density of each opcode was calculated based 

on its frequency within the sample. The features most likely to provide the maximum amount 

of information to the Support Vector Machine (SVM) were selected by applying a pre-filter. 

This pre-filter helps reduce the total size problem caused by using the technique of n-gram 

analysis to examine all possible opcode configurations. Every opcode's relevance to the 

categorization through SVM assignment was ranked using Principal Component Analysis 

(PCA). In order to create a selection of crucial components, principal component analysis 

(PCA) reduces the data size while keeping the variety in the data. According to the 

researchers, it was found that the top 8 opcodes accounted for 99.5% of the overall variation 
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in the data. This resulted in a reduction of information from the initial 150 opcodes. The 

effectiveness of this reduction was verified through the use of an SVM. 

2.5.3 Existing Dataset in the Context of Other Datasets 

O'Kane et al. (2013) [59] provided the present dataset, which includes both benign and 

malicious PE samples (300 and 350, respectively). Despite the higher size of the dataset 

compared to earlier studies like Bilar's (2007) [62], it falls short in terms of scale when 

compared to similar studies. In a groundbreaking study conducted by Schultz et al. (2001), 

a total of 3265 malicious files and 1001 benign files were carefully chosen for analysis. In 

their study, Santos et al. (2011) [63] employed a dataset comprising 2,000 files, which were 

evenly distributed among the groups. Moskovitch et al. (2008b) and Shabtai et al. (2012) 

[64], who claim to have analysed the biggest dataset available at the time, report comparing 

7688 malicious files with 22735 benign files. All sorts of comparisons with a more 

comprehensive collection of variables are made possible by the aforementioned databases. 

However, it is important to note that there are limitations associated with the process of 

collecting the data. The sample data (Shabtai et al., 2012) [64] was disassembled using 

IDAPro, a renowned disassembler in the industry. According to the authors, the software 

was able to actively disassemble only 74% of the original files. According to the data 

provided, the attrition rate for malicious software in 2011 was approximately 26% based on 

a sample of files. Similarly, the attrition rate for benign software was approximately 10% 

based on a larger sample of 2319 files. The remaining 26% of files have not been examined, 

except for the assertion that the excluded documents were either compressed or bundled. 

However, it is important to note that the authors do acknowledge the potential application of 

extraction software in malware analysis. However, they fail to provide any justification for 

why they did not utilize the readily available program mentioned in their study on the 

complete dataset. 

The dataset used by Santos et al. (2011) [63] comprised of 2000 files due to technical 

limitations that were not clearly specified. The harmful files were chosen arbitrarily from a 

collection of 170,000 sample files kept on the VXHeaven website.  

Significantly, the use of compressed files was not employed during the static analysis. The 

study's important drawback is that it failed to thoroughly investigate disguised malware, 
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resulting in an unsuccessful process. More than 50% of the sample set included three types 

of malware: backdoors, hacking tools, and email worms. These findings suggest the 

possibility of within-class inequalities, as elaborated further in the subsequent explanation. 

In addition, the malware sampled does not adequately reflect the whole scope of malware 

since it does not include all known variants. Table 2.1 displays the comparison of file sizes 

across different categories. The average file size for all categories was similar, with 299KB 

compared to 222KB. However, there were variations in the distribution of files within each 

size category. The research has a notable drawback, as it compared files using PE file size 

instead of considering the number of opcodes in a specific application segment or a fixed 

run-time. The quantity of information, specifically the number of opcodes, does not have 

any impact. Consequently, the data may vary depending on the number of opcodes present 

in each class. 

Table 2.1: Distribution of File Types in Santos et al (2011) [63]. 

Malware Benignware 

<100KB 43.8% 69.6% 

100-1000KB 49.6% 25.4% 

>1000KB 6.6% 5.0% 

The input is being passed to the classifier. In their study, Kang et al. (2014) classified a total 

of 6721 malware samples [65] and obtained from VxHeaven into three distinct categories: 

backdoor, trojan, and worm. The researchers identified a comprehensive range of 26 

malware types, each with over 100 variations within their respective families. There were 

no measures implemented to guarantee that sampling across categories was aligned, leading 

to the discovery of 497 worm variants, 3048 backdoor variants, and 3176 trojan variants. 

The analysis was conducted dynamically with the utilisation of VMWare and the Pin 

debugger, leading to the generation of execution traces which were later examined. The 

overall implementation trace for the entire data set was 201GB, with the worm category 

accounting for only 14GB, or 7%, of the trace, which is indicative of the impact of unequal 

sampling. The consistency of the number of opcodes transmitted to the machine learning 

models may be affected, which can impact the results of models that rely on traces and are 
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dependent on different types of malware. According to the authors, there was a set maximum 

of one million orders, with no specified minimum requirement. 

The dataset created by O'Kane et al. (2013) [59] has the benefit of being dynamically 

generated through the use of the original PE source, leading to a statically analysed raw file. 

The running durations have been adjusted, thereby controlling the quantity of opcodes 

allocated to the machine learning component. 

In their study, Nappa et al. (2013) [66] investigated the identification of attack servers 

managed by the identical malicious individuals.Over a period of eleven months, 500 attack 

servers in the open were tracked by the researchers. A total of 11,688 malicious binaries 

were compiled from the collated artifacts. The authors describe a technique called "milking" 

where unpatched VMs, known as honeyclients, were instructed to visit a list of malware-

serving URLs that had been identified beforehand. The purpose was to gather data on the 

resulting malware infections. The dataset was an illustration of a practical attack vector and 

was collected in the field. The specimens consist primarily of members of a small number 

of Trojan family groups.
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3. METHODOLGY

3.1 OVERVIEW 

This chapter will present the methodology used for detecting malware through static analysis 

of private data obtained from smart home IoT devices. The data will be classified into two 

categories: benign and malware. Additionally, the chapter will discuss the process of data 

collection and aggregation, the dataset utilised, and the experimental setup employed. Please 

elucidate the various stages of the framework. Subsequently, we showcased the performance 

metrics that assess favourable outcomes such as throughput, prison, f1-score, and recall. In 

conclusion, we now offer the synopsis of this chapter. 

3.2 INTRODUCTION 

We have assembled a diverse assortment of three distinct smart home IoT devices, 

encompassing both unadulterated and compromised units. The dataset utilised is conn.log. 

labelled, which corresponds to the Zeek conn.log file derived from the Zeek network 

analyzer utilising the original pcap file. After that, the system continuously monitors and 

records their activities, sending the data to a database (Dataset). This dataset is then utilised 

as the input for machine learning and deep learning classification procedures. Once the 

dataset has been gathered, the classifier is trained using it. Subsequently, a testing sample is 

created and outcomes are obtained. AI is employed in this domain to determine whether the 

samples are normal (benign) or infected (malware). 

3.3 PROPOSED MODEL 

The primary goal of this approach is to identify the malware employed in this research 

project. The objective of this thesis was to assess the effectiveness of machine learning and 

deep learning in relation to three distinct smart home IoT devices. It employed a range of 

algorithms in various scenarios. The proposed model is explained in Figure 3.1. 
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Figure 3.1: Methodology of The Proposed Model [67]. 

3.4 DATABASE (DATASET) 

In January 2020, a dataset consist from 23 captures  was released. This dataset contains 

network traffic data from three distinct smart home IoT devices. The dataset contains a total 

of 23 captures, with 20 of them being identified as malicious and 3 as benign. The benign 

captures account for approximately 13.05% of the dataset, while the remaining 86.95% are 
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classified as malware.The dataset contains malware labels such as Attack like ( C&C, C&C-

FileDownload, C&C-HeartBeat, C&C-HeartBeatAttack, C&C-HeartBeat-FileDownload, 

C&C-Mirai, C&CTorii, DDoS, FileDownload, Okiru, Okiru-Attack, and Part Of A 

Horizontal Port Scan.The dataset utilised is conn.log.labelled, which corresponds to the Zeek 

conn.log file derived from the Zeek network analyzer utilising the original pcap file. 

3.5 DATA LOADING 

Firstly, loading all 23 datasets from captures separately, where each capture in the format of 

conn.log.labeled represents a one dataset , Each capture (dataset) has been loaded into 

separated data frame, where each one contains 20 features in addition to the label (ts, uid, 

id.orig_h, id.orig_p, id.resp_h, id.resp_p, proto, service, duration, orig_bytes, resp_bytes, 

conn_state, local_orig, local_resp, missed_bytes, history,orig_pkts,orig_ip_bytes, 

resp_pkts, resp_ip_bytes, label). 

Then we combined all 23 dataset into a one dataset (data frame), where the final dataset 

consists of 1048575 samples with 20 features in addition to the label, These samples are 

combination of malicious and benign samples, as shown in the following Figure (3.2): 

Figure 3.2: Malicious and Benign Samples [68]. 
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3.6 DATA PREPARING AND PREPROCESSING 

We combined all malicious categories into one category (Malware), while the other category 

is the benign samples, as table (3.1) below show the data type and number of it: 

Table 3.1: The Data Type and Number [69]. 

Data Type Number of Samples 

Malware 849498 

Benign 199077 

The distribution of samples after combination illustrated, To make Preparing and 

Preprocessing: in the following Figure (3.3): 

Figure 3.3: Data Binary-Categories [70]. 

a. Dropping Unnecessary features: it's essential to understand how to deal with highly

correlated features. Highly correlated features refer to variables that have a strong linear 

relationship with each other. When two or more variables are highly correlated, they carry 

almost the same information like : 

('ts','uid','id.orig_p','id.resp_h','id.resp_p','service','local_orig','local_resp','history') 
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b. Handling corrupted features: there are some features contains many (-) values that must

be handled, we replace all these values by 0. 

c. Features Encoding: we have applied the Encoding technique to encode some categorical

feature, which means convert categorical features into neumeric. These features that have 

been encoded are: (proto, conn_state, id.orig_h). 

d. Features Scaling: We have performed the Standard Scaler to perform features scaling,

which means standardize features by removing the mean and scaling to unit variance. The 

final dataset after preprocessing consists of 1048575 samples with 12 features in addition to 

the binary class label in two categories (Malware and Benign). 

3.7 EXPERIMENTS SETUP 

install the Windows 10 operating system on a dedicated laptop with CPU Intel Core i7 

6820HQ CPU 64-bit operating system, 2.70GHz  , RAM 32.0 GB, system make changes 

and modification , finally building our model testing it and get result  on jupyter notebook 

2022 python 3.10.6. program. 

3.8 PERFORMANCE METRICS 

Classifiers have numerous metrics for performance. There is an overview in Refs. [67] as 

well as [68], and additional metrics are proposed in Refs. [69] and [70]. This part presents 

several performance measures commonly employed in the field of Internet of Things 

malware detection. As an ordinary binary classification problem, the outcomes of predicting 

whether an application includes malware may be categorized into four categories, as a 

confusion matrix demonstrates. [71][72] in Table (3.2): 

Table 3.2: Confusion Matrix Demonstrates [72]. 

Actually Positive Actually Negative 

Predicted positive TP FP 

Predicted negative FN TN 
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Following are definitions of the terms FP, FN, TP, and TN: 

a. True positive (TP): The program is malicious and its malicious nature was rightly

foretold.

b. False positive (FP): The program isn't malicious, despite erroneous predictions to the

contrary.

c. True negative (TN): The app isn't malicious and its non-malicious nature was rightly

predicted.

d. False negative (FN): The app was incorrectly forecasted as non-malicious despite being

malicious.

The sum of the above four incompatible results equals the total amount of samples tested. 

On the basis of each of these fundamental concepts, a number performance metrics have 

been developed.  

The following metrics are widely employed: 

a. Accuracy (Acc): indicates the proportion of successful estimates relative to the overall

amount of test samples.

      𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑀
(3.1) 

Equation (3.1) known as accuracy equation. 

b. Precision (P): indicates the proportion of samples that are positive reliably anticipated

among every positive sample expected.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
(3.2) 

Equation (3.2) known as precision equation.  

c. Recall (R): indicates the ratio of accurately anticipated samples that are positive to the

total samples that are positive.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
(3.3) 

Equation (3.3) known as recall equation.  

Precision and recall are crucial indicators of performance, however they offer a partial 

assessment.  
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Precision Equation 

For an additional assessment of the classifier's performance, the harmonic average of 

precision and recall, also known as the F1 score, can be utilized for combining both of these 

numbers.  

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2

1

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
+

1

𝑅𝑒𝑐𝑎𝑙𝑙

  (3.4) 

Equation (3.4) known as F1-score. 

Figure 3.4: Confusion Matrix Measurement [72]. 

3.9 MACHINE AND DEEP LEARNING ALGORITHMS FOR MALWARE 

DETECTION 

3.9.1 Machine Learning Algorithm 

a. Random Forest (RF) : Random Forest is an algorithm for supervised Machine Learning

developed by Leo Breiman in 1997. The above method makes use of a collection of 

classification trees [72].  

The group learning method creates multiple learners and combines their outcomes into a 

single set. Random Forest employs a modification of the Bagging [73] technique. In 

Bagging, each classifier is constructed independently using a bootstrap collection of the 

input data. At a node splitting in a conventional decision tree classification algorithm, a 

determination is made depending on all feature attributes. In contrast, Random Forest 

determines the optimal parameter at every node of a decision tree by picking a number of 

features. This random choice of features enables Random Forest methods to not only scale 

well when there are numerous features per characteristic vector, but also reduces the degree 

of interdependence (correlation) among the feature attributes. Thus, this technique is less 

susceptible to innate data disturbance.  
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Figure 3.5: Random Forest Classification Process Based [73]. 

b. Decision Trees (DT): Using data items stored in a structure resembling a tree, a decision

tree is used to make choices. As in a mode of cognition and processing analogous to that 

utilized by humans when confronted with decisions that are difficult, its fundamental process 

adheres to the straightforward and obvious ''divide and conquer'' approach [74]. 

Figure 3.6: Decision Trees Classification Process Based [74]. 

c. Adaboost: is a 1995 machine learning meta-algorithm developed by Yoav Freund and

Robert Schapire, it is a method of ensemble learning which combines numerous weak 

classifiers to produce a strong classifier. The algorithm operates by training weak classifiers 

repeatedly on various subsets of the training data and giving weights to every classifier 
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according to its performance. The final classifier is the weighted average of each of the 

classifiers [75]. 

Figure 3.7: Adaboost Classification Process Based [75]. 

d. XG Boost: (Extreme Gradient Boosting) is a machine learning algorithm developed to

enhance the efficacy and efficiency of gradient boosting decision trees. It is a kind of 

software library created to enhance the effectiveness and efficacy of machine learning 

designs, it is a form of ensemble learning that utilizes the predictions from various weak 

models to produce a stronger prediction, and it is a method of learning that combined the 

forecasts of numerous weak models to produce a stronger forecast. The algorithm is 

extremely flexible and permits the optimization of numerous model parameters [76]. 
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Figure 3.8: XG Boost Classification Process Based [76]. 

e. Gradient Boosting: Gradient Boosting is an algorithm for machine learning applied to

construct models that are predictive. It is a method that integrates multiple poor learners into 

a single strong learner. The algorithm iteratively trains insufficient learners on gradient-

based functions and integrates them into the model as "boosted" participants. The learners 

who are weak are typically decision trees. Gradient boosting is a potent method for 

developing predictive models that can be applied to tasks involving regression as well as 

classification. Gradient tree boosting is additionally known as gradient descent boosting and 

gradient boosting machines. (GBM) [77]. 
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Figure 3.9: The architecture of Gradient Boosting [78]. 

f. Hard Voting Classifier: The combination standards used to classify labels include the

simple majority vote, where the prediction that appears most frequently in the base classifiers 

is selected. This method is commonly used in bagging. In the context of binary scenarios, 

the need for a majority vote system aligns with the classical Condorcet criterion. This 

criterion states that for a class to be declared the winner, it must consistently outperform 

each of the other classes in individual evaluations or one-on-one matches. In other words, it 

must be preferred over the other class when assessed individually [79]. 

g. Soft Voting Classifier: The combination standards were derived by polling the constant

outputs of each base classifier using a formula (average, maximum, minimum, product  [79]. 

This formula selects the class label that maximises the numerical value of the utilised 

function for forecast probabilities. From a predictive power standpoint, the average is 

considered the most effective. The common combiner is a direct competitor to the prevailing 

preference for packaging. 
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Figure 3.10: How the Hard and Soft Voting Work [79]. 

3.9.2 Deep Learning Algorithm 

a. Fully Connected Neural Network (NN):

Its known as a dense neural network, is a type of artificial neural network where all the nodes 

or neurons in one layer are connected to the neurons in the next layer. 

 It is a feedforward neural network that is used for supervised learning. The fully connected 

neural network consists of a series of fully connected layers, where each output dimension 

depends on each input dimension. The mathematical form of a fully connected network is 

represented by the input to a fully connected layer, and the output from the fully connected 

layer is computed using the back-propagation algorithm for computing the error. The Hard 

Voting Classifier algorithm is an ensemble machine learning algorithm that combines the 

predictions of multiple classifiers, including fully connected neural networks, to make a final 

prediction. The Hard Voting Classifier works by taking the majority vote of the predictions 

made by each of the individual models [80]. 
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Figure 3.11: Example of Fully-Connected Neural Network [81]. 

b. Long Short-Term Memory (LSTM):

Multiple LSTM architectures are pertinent to the malware analysis problem, and malware 

datasets are appropriate for sequential analysis. It is a storage cell, that is a linear unit with a 

fixed amount of weight self-connection. Multiplicative input and output gateway units 

regulate the steady error flow so that unrelated inputs and memory contents have no effect 

on it. The input and output gates discover which defects must be scaled or trapped [82]. 

c. Bi-Long Short-Term Memory (Bi-LSTM):

The Bidirectional LSTM (BiLSTM) is a type of recurrent neural network that is commonly 

used in the field of natural language processing (NLP). In contrast to traditional LSTM, the 

input moves bidirectionally, allowing for the utilisation of data from both directions. It is 

also a powerful tool for modelling the logical relationships between words and phrases in 

both directions of the sequence. To summarise, BiLSTM incorporates an extra LSTM layer 

that reverses the information flow. To put it concisely, it suggests that the given sequence 

passes through an extra LSTM layer in reverse [83]. 
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Figure 3.12: The Structure of The Long Short-Term Memory (LSTM) Neural Network [84]. 

d. Convolutional Neural Network (CNN):

CNN is an efficient recognitionalgorithm which is utilized extensively in recognition of 

patterns and processing of images. It has numerous characteristics, including a simple 

framework, fewer training variables, and flexibility. Invoice analysis and recognition of 

images have become a trending subject. Its weight-shared network design resembles 

biological neural networks more closely. It decreases the network model's complexity and 
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the total amount of weights. includes two layers one is feature extraction layer, the input of 

each neuron is connected to the local receptive fields of the previous layer, and extracts the 

local feature. Once the local features is extracted, the positional relationship between it and 

other features also will be determined [85]. 

Figure 3.13: Basic Convolutional Neural Network (CNN) Architecture [86]. 
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4. RESULTS AND DISCUSSIONS

4.1 INTRODUCTION 

In this chapter, the results achieved through the suggested method, which was extensively 

explained in the previous chapter, are presented and analysed. In our particular scenario, the 

evaluation and comparison of machine learning and deep learning algorithms were 

conducted, with a focus on four performance metrics: accuracy, precision, recall, and F1-

score that found by coding using python on jupyter notebook. 

4.2 RESULT FOR MACHINE AND DEEP LEARNING 

4.2.1 Machine Learning Algorithmes Results  

a. Random Forest:

Results: Confusion Matrix 

Figure 4.1: Confusion Matrix of Random Forest. 

Here The randome forest algorithm recognized 169876 of malicious data and it Failed 24 

time to recognized it. 

Its also succeed on recognized 32507 of benign data and it failed 7308 time to recognized 

it. 
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It is clearly obvious that malicious detecting are better more than benign detecting because 

of number of data for training the model. 

Classification Evaluation Metrics: 

Figure 4.2: Classification Evaluation Metrics of Random Forest. 

The metrics of this algorithm is (precision = 97, recall = 96.4, F1-score = 96.8 , accuracy 

=96.9). 

b. Decision Trees:

Results:  

Confusion Matrix: 

Figure 4.3: Confusion Matrix of Decision Trees. 
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Here The Decision Trees algorithm recognized 169876 of malicious data and it Failed  24 

time to recognized it. 

Its also succeed on recognized 32525 of benign data and it failed 7290 time to recognized it. 

Classification Evaluation Metrics: 

Figure 4.4: Classification Evaluation Metrics of Decision Trees. 

The metrics of this algorithm is (precision = 97, recall = 96.3, F1-score = 96.1 , accuracy 

=96.9) . 

c. AdaBoost :

Results:  

Confusion Matrix: 

Figure 4.5:  Confusion Matrix of AdaBoost. 
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Here The AdaBoost algorithm recognized 169693 of  malicious data and it Failed  207 

time to recognized it . 

Its also succeed on recognized 31960 of benign data and it failed 7855 time to recognized 

it . 

Classification Evaluation Metrics: 

Figure 4.6: Classification Evaluation Metrics of AdaBoost. 

The metrics of this algorithm is (precision = 96.9 ,recall = 96.2 , F1-score = 96.4, accuracy 

=96.5 ). 

d. XGBoost :

Results : Confusion Matrix 

Figure 4.7: Confusion Matrix of XGBoost. 
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Here The XGBoost algorithm recognized 169875 of  malicious data and it Failed  25 time 

to recognized it . 

Its also succeed on recognized 32525 of benign data and it failed 7290 time to recognized 

it. 

Classification Evaluation Metrics: 

Figure 4.8: Classification Evaluation Metrics of XGBoost. 

The metrics of this algorithm is (precision = 97.4 , recall = 96.1 , F1-score = 96.8, accuracy 

=96.9). 

5. Gradient Boosting

Results:  Confusion Matrix 

Figure 4.9: Confusion Matrix of Gradient Boosting. 
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Here The Gradient Boosting algorithm recognized 169691 of  malicious data and it Failed  

209 time to recognized it. 

Its also succeed on recognized 32299 of benign data and it failed 7516 time to recognized it 

Classification Evaluation Metrics: 

Figure 4.10: Classification Evaluation Metrics of Gradient Boosting. 

The metrics of this algorithm is (precision = 96.2 , recall = 96.5 , F1-score = 96.5 , accuracy 

=96.9 ). 

6. Hard Voting Classifier of (Randomforest , Decisiontree, Adaboost, Xgboost, Gradient

boosting). 

Results:  

Confusion Matrix: 

Figure 4.11: Confusion Matrix of Hard Voting Classifier of Previous Algorithmes. 
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Here Hard Voting Classifier of (Randomforest , Decisiontree, Adaboost, Xgboost, Gradient 

boosting) algorithm recognized 169873 of  malicious data and it Failed  27 time to 

recognized it . 

Its also succeed on recognized 32522 of benign data and it failed 7293 time to recognized it 

Classification Evaluation Metrics: 

Figure 4.12: Classification Evaluation Metrics of Hard Voting Classifier of Previous Algorithms 

The metrics of this algorithm is (precision = 97.1 , recall = 96.8 , F1-score = 96.3 , accuracy 

= 96.1) . 

7. Soft Voting Classifier of (RandomForest , DecisionTree, AdaBoost, XGBoost, Gradient

Boosting). 

Results: Confusion Matrix: 

Figure 4.13: Confusion Matrix of Soft Voting Classifier of Previous Algorithms. 
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Here soft Voting Classifier of (Randomforest , Decisiontree, Adaboost, Xgboost, Gradient 

boosting) algorithm recognized 169873 of malicious data and it Failed  27 time to recognized 

it. 

Its also succeed on recognized 32527 of benign data and it failed 7288 time to recognized it. 

Classification Evaluation Metrics: 

Figure 4.14: Classification Evaluation Metrics of soft Voting Classifier of Previous Algorithms. 

The metrics of this algorithm is (precision = 97.5 ,recall = 96.8 , F1-score = 96.9, accuracy 

=96.3) . 

The Results Summary of all Machine Learning algorithms as we can see below in the table 

(4.1): 

Table 4.1: Result Summury of Machine Learning Algorithms. 

Model Precision Recall F1-Score Accuracy 

Random Forest 0.97 0.964 0.968 0.969 

Decision Tree 0.97 0.963 0.961 0.969 

AdaBoost 0.969 0.962 0.964 0.965 

XGBoost 0.974 0.961 0.968 0.969 

Gradient Boosting 0.962 0.965 0.965 0.969 

Hard Voting 0.971 0.968 0.963 0.961 

Soft Voting 0.975 0.968 0.969 0.963 

Classification Evaluation Metrics of all Machine Learning algorithms was as the Figure 

(4.15) below: 
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Figure 4.15: Classification Evaluation Metrics for All Machine Learning Algorithms. 

4.2.2 Deep Learning Algorithmes Results  

a. Fully Connected Neural Network (NN):

Model Architecture: 
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Figure 4.16: Model Architecture Fully Connected Neural Network (NN). 

Results: 

Confusion Matrix: 

Figure 4.17: Confusion Matrix of Fully Connected Neural Network (NN). 

Here the Fully Connected Neural Network (NN) algorithm recognized 339722 of  malicious 

data and it Failed  77 time to recognize it. 

Its also succeed on recognized 64287 of benign data and it failed 15344 time to recognized 

it Classification Evaluation Metrics: 
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Figure 4.18: Classification Evaluation Metrics of Fully Connected Neural Network (NN). 

The metrics of this algorithm is (precision = 96.1,recall = 0.96, F1-score = 96.6, accuracy 

=96.1 ). 

Model Performance (Accuracy): 

Figure 4.19: Model Performance (Accuracy) of Fully Connected Neural Network (NN). 

Model Performance (Loss): 

Figure 4.20: Model Performance (Loss) of Fully Connected Neural Network (NN). 
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b. Long Short -Term Memory (LSTM)

Model Architecture : 

Figure 4.21: Model Architecture of Long Short-Term Memory (LSTM). 

Results:   

Confusion Matrix 

Figure 4.22: Confusion Matrix of Long Short -Term Memory (LSTM). 



53 

Here the Fully Connected Neural Network (NN) algorithm recognized 339602 of  malicious 

data and it Failed  67 time to recognize it. 

Its also succeed on recognized 64745 of benign data and it failed 15016 time to recognized 

it. 

Classification Evaluation Metrics: 

Figure 4.23: Classification Evaluation Metrics of Long Short -Term Memory (LSTM). 

The metrics of this algorithm is (precision = 97, recall = 96, F1-score = 96.2 , accuracy 

=96.5). 

Model Performance (Accuracy): 

Figure 4.24: Model Performance (Accuracy) of Long Short -Term Memory (LSTM). 
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Model Performance (Loss): 

Figure 4.25: Model Performance (Loss) of Long Short -Term Memory (LSTM). 

c. Bi-Long Short -Term Memory (Bi-LSTM)

Model Architecture: 

Figure 4.26: Model Architecture of Bi-Long Short-Term Memory (Bi-LSTM). 
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Results : 

Confusion Matrix : 

Figure 4.27: Confusion Matrix of Bi-Long Short-Term Memory (Bi-LSTM). 

Here the Bi-Long Short-Term Memory (Bi-LSTM) algorithm recognized 339595 of 

malicious data and it Failed  74 time to recognize it. 

Its also succeed on recognized 64688 of benign data and it failed 15073 time to recognized 

it. 

Classification Evaluation Metrics: 

Figure 4.28: Classification Evaluation Metrics of Bi-Long Short-Term Memory (Bi-LSTM). 
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The metrics of this algorithm is (precision = 97, recall = 96.4, F1-score = 96.1 , accuracy = 

96.3 ). 

Model Performance (Accuracy): 

Figure 4.29: Model Performance (Accuracy) of Bi-Long Short-Term Memory (Bi-LSTM). 

Model Performance (Loss): 

Figure 4.30: Model Performance (Accuracy)of Bi-Long Short-Term Memory (Bi-LSTM). 
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d. Convolutional Neural Network (CNN):

Model Architecture: 

Figure 4.31: Model Architecture of Convolutional Neural Network (CNN). 
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Results:  

Confusion Matrix: 

Figure 4.32: Confusion Matrix of Convolutional Neural Network (CNN). 

Here the Convolutional Neural Network (CNN) algorithm recognized 339636 of  malicious 

data and it Failed  33 time to recognize it. 

Its also succeed on recognized 64329 of benign data and it failed 15432 time to recognized 

it. 

Classification Evaluation Metrics:  

Figure 4.33: Classification Evaluation Metrics of Convolutional Neural Network (CNN). 
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The metrics of this algorithm is (precision = 96.5 , recall = 96.7 , F1-score = 96.9, accuracy 

= 96.9). 

Model Performance (Accuracy): 

Figure 4.34: Model Performance (Accuracy) of Convolutional Neural Network (CNN). 

Model Performance (Loss): 

Figure 4.35: Model Performance (Loss) of Convolutional Neural Network (CNN). 
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Results Summary for all Deep Learning Models: 

Table 4.2: Result Summary of Deep Learning Algorithms. 

Model Precision Recall F1-Score Accuracy 

Multi-Layer Neural 

Network Model 

0.961 0.96 0.966 0.961 

LSTM Model 0.97 0.96 0.962 0.965 

Bi-LSTM Model 0.97 0.964 0.961 0.963 

CNN Model 0.965 0.967 0.969 0.969 

Classification Evaluation Metrics: 

Figure 4.36: Classification Evaluation Metrics for All Deep Learning Models Used. 
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4.3 COMPARISON FOR THE RESULT OF CLASSIFIER 

Figure 4.37: Classification Evaluation Metrics Comparison of Machine Learning and Deep 

Learning Classifiers. 
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4.4 SUMMARY 

In this chapter, we examined and talked about a machine learning like (Random Forest, 

Decision Tree, Ada Boost, XG Boost, Gradient Boosting , Hard and soft voiting )  and deep 

learning classifier like (NN, LSTM, BI-LSTM and  CNN), for  The data of three   different 

smart home IOT devise In addition ,We used four performance metric like this (accuracy, 

Recall, f1-score, precision)  and because that the number data ( malicious and benign)  are 

imbalance we take f1-score as the major metric for our algorithms and found that all of our 

algorithms achieve the best result which is (96.9%) for accuracy and f1-score  , This section 

allowed us to compute the efficacy criteria evaluations for each  classifier that we used. 

So its good if we compare it with other result achieved by other researcher as below : 

a. Malware detection by using MADAM detector which is based on multilevel anomaly

detector achieved 96 % for accuracy.

b. Using android analysis for detection this inspection using two unrelated intent objects

and the accuracy was about 91 %.

c. There is study by Bhatia and kaushal on 2017 its based on dynamic analysis for android

malware detection its achieved more than 80 % for accuracy.

d. Another study by liang et al. , on 2017  based on end to end detection using call structure

it achieved 93 % for accuracy.

e. Liu et al , on  2016  did detection based on hybrid method for malware detection and it

achieved 93.33 % for accuracy.
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5. CONCLUSION AND FUTURE WORK

5.1 CONCLUSION 

This work has supplied an assessment of the effectiveness of machine learning and deep 

learning algorithms by get result and comparing two different major ways  like 

(RandomForest , DecisionTree, AdaBoost, XGBoost, GradientBoosting , NN, CNN, 

LSTM,BI-LSTM). These algorithms tested by using four performance metrics: (accuracy, 

Re call, F1-scor  and precision). 

The results of our simulation are fairly convincing, so the conclusions that follow can be: 

Because the number data ( malicious and benign)  which is imbalance we take f1-score as 

the major metrics  and found that all of our algorithms achieve good and excellent result. 

We take the raw data and also  used the reverse engineering and choosing the right algorithm 

and make the suitable tuning. 

5.2 FUTURE WORK 

The next step is to collect additional samples for every type of it to develop malware 

detection by machine and deep learning algorithms , it should focus  on to separate the low-

level system details that are used for various analyses from the high-level information that 

is communicated to the user. 

The capability to recognize sophisticated malware attacks, such as Zero-day attacks, requires 

additional development. Development of permission-based Behavior-based analysis is also 

possible. 

We should demonstrate that the use of deep neural networks for static malware detection is 

viable and has potential for further improvement Malware is increasingly posing a serious 

security threat to computer systems. It is essential to analyze the behavior of malware and 

categorize samples so that robust programs to prevent malware attacks can be developed. 



64 

Towards this endeavor, we have proposed a deep convolutional neural network (CNN) 

architecture for malware classification.  

We train a CNN for classification. Experimental results on two benchmark malware 

classification datasets shows the effectiveness of our proposed method. 
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