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ABSTRACT 

USE OF ARTİFİCİAL INTELLİGENCE TECHNİQUES TO IMPROVE 
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 M.Sc., Electrical and Computer Engineering, Altınbaş University
 Supervisor: Prof. Dr. Hasan Hüseyin BALIK
 Date: 12/2022
 Pages: 83
Many problems that traditional algorithms cannot address have been solved by artificial 
intelligence, and while some benefits have been achieved by learning certain elements of the 
receiver, the optimal strategy is joint learning of the entire receiver, which has also been 
effectively used in radio communications. In order to do this, we propose a completely deep 
convolutional neural network that implements the receiver pipeline from the frequency domain 
signal stream to the encoded bits in a 5G compatible manner. By generating the inputs of the 
convolutional neural network in a highly accurate manner using both experimental data and 
code, we enable channel estimates. In addition, the soft bits produced by the deep convolutional 
neural network are compatible with the channel coding used in 5G systems. We show that the 
performance of Rx-NN is better than traditional techniques using 3GPP specific channel 
models. We further show that the improved performance is probably due to the ability of Rx- 
NN to learn to exploit known constellation locations to obtain obscure data symbols along with 
local symbol distribution to enhance detection accuracy, and by investigating end-to-end 
learning gains using a frequency and time-selective fading channel using OFDM, this is through 
modulation improvements that appear on AWGN channels when there is an incomplete channel 
in the receiver. We believe that the learned transceiver is effective because it can eliminate the 
need for pilots signal and remove the burden associated with demodulation signals.
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1. INTRODUCTION 

Wireless communications appeared commercially in the late 1977 when the first types of 

devices were produced, which were of the analog type and were working with AMPS 

technology in North America and Europe. For wireless communications (voice only) and it had 

little coverage and low reliability, after that the second generation of communications appeared, 

in which digital signals were used, through which the sound quality was improved and the 

coverage of larger areas and high security and the use of SMS service. Examples This 

generation in Europe is GSM and in North America CDMA and in the third generation and with 

the emergence of data traffic and the rate of transmit and receiving data more and the production 

of smart devices, examples of this generation are HSPA and HSPA + (mobile data), in the 4G 

of communications and with the emergence of LTE and LTE ADVANCED (broad band) 

systems [1]. which were characterized by a higher data transfer rate and in the (5G), As shown 

in the (Figure 1.1), which came due to the rise in the number of gadgets a services provided and 

the quality of communications that you need Data sent per second (from 0 to 10 Gbps) and 

Massive Machine-Type Communications (MMTS) is the use of a large number of connected 

devices and Ultra-Reliable Low-Latency Communication (URLLC) is the low latency of the 

connection. When we talk about the generations of wireless communications, we must refer to 

the international organizations and institutions that are based on issuing standards, which are a 

set of instructions that all companies must follow when they manufacture new technologies and 

the goal is to make devices from different companies deal with each other and in 

communications Wireless The so-called International Telecommunication Union (ITU), a body 

connected to the United Nations, is in charge of establishing the rules that businesses must 

follow. 
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Figure 1.1: Evolution of Mobile Technology 

In 2015, a conference was held by representatives of ITU who are responsible for the 

development of radio communications and set the vision of IMT 2020, and this is what is called 

today the fifth generation(5G)  and a set of specifications that must be included in the system 

were identified, including low latency (URLLC), high reliability, advanced antenna tech. 

massive  (MIMO),Millimeter waves (mm wave)  , the Internet Of Things (IOT), spectrum 

flexibility, and among these organizations are Standard Development Organization (SDO) [2], 

The initial release 15 and release 16, as illustrated in figure below (Figure 1.2). 

 
Figure 1.2: 5G development. 
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1.1 PROBLEM STATEMENT  

MIMO systems are an important solution to the challenges of 5G networks that must meet many 

requirements, including high data rates, low latency, and high reliability. Traditional algorithms 

cannot handle many problems, but when investigating deep learning (DL) algorithms, it is 

appropriate to use these algorithms to solve them. When using deep learning, MIMO systems 

in wireless networks are optimized in terms of reducing computational complexity and 

improving power consumption. We present Rx-NN, a fully convolutional deep neural network. 

This Rx-NN neural receiver replaces hardware channel estimation, equalization and 

demodulation resulting in reduced complexity, in addition, eliminating these three devices leads 

to the possibility of reducing or not having to use the experimental signals used to improve 

channel estimation, From the signal stream in the frequency domain to the decoded bits, the 

complete receiver pipeline compatible with 5G networks is implemented, and we make accurate 

channel estimation possible by creating a convolutional neural input, using experimental data 

and code, and networking in a very special way. In addition, Rx-NN creates bits that are 

compliant with the 5G systems' use of channel coding. We show that Rx-NN outperforms 

traditional approaches use 3GPP-specific channel models. In addition, we illustrate a high-

performance system that has been trained for the direct detection of uncorded bits from 

frequency domain antenna signals. Furthermore, Rx-NN has been trained to support various 

private 5G networks through experimental configurations and modification plans. The 

difficulty we encountered in connecting this neural receptor, the number of OFDM tokens 

should be equal to the number of nodes of the input layer of the Rx-NN when building the 

neural network so that both symbols. For the unknown and known convolutional input channels 

were generated using the experimental tokens. As a result, channel estimation using Rx-NN 

efficiently utilized experimental data and codes. Rx-NN outperforms traditional methods in 

terms of channel estimation and equalization by using simulation models to send uplink and 

downlink data in 5G, in fact, it shows how Rx-NN can effectively deal with non-Gaussian noise 

and interference. We demonstrate that larger performance gains can be obtained by carefully 

planning the architecture of the neural network and its inputs. According to our research, the 

majority of benefits are achieved by allowing the nervous system to use and distribute codes of 
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unknown data to improve the accuracy of channel estimation. By doing so, it enhances the radio 

performance of each device within the network. By approaching the implementation of the radio 

receiver as a supervised educational topic, it is feasible to take into account numerous individual 

receiver tasks, such as channel estimation and equalization, together. This work's main 

argument is that doing so will produce performance that is superior to optimizing each 

component separately. This type of technique has the benefit that the receiver's task can be 

characterized as a secondary educational challenge. The receiver's job is to extract information 

bits from an orthogonal frequency division multiplexing (OFDM) waveform that has been 

modified to match the waveform it has just received. without the need to apply manual 

classification methods or existing algorithms. Actually, the input data is simply the received 

waveform in the frequency domain, while the original transmitted bits are the corresponding 

labels. RxNN is able to perform all functions (channel estimation, equalizer, de-mapping 

removal) simultaneously because it has been taught to collect Log- likelihood ratio (LLRs) 

directly from the field antenna data frequency. 

1.2 OBJECTIVES 

The main goal of this project is to employ an OFDM channel model with a neural receiver 

dubbed Rx-NN that takes frequency selectivity and channel aging into account. This neural 

receiver replaces channel estimation, optimizer, and demodulation to reduce the computing 

complexity of those involved in optimizing wireless networks that use Massive (MIMO) 

systems. It does this by employing a small number of orthogonal pilots for channel estimation. 

An upgraded neural transceiver can consistently detect the code without the use of orthogonal 

pilots thanks to operation across multiple subcarriers and OFDM codes, which results in a 

considerably lower Bit Error Rate (BER). Gains in productivity are possible because no 

transmission-related renewable energy from bookmarks is lost. 

1.3 FIFTH GENERATION COMMUNICATIONS  

The term 5G refers to mobile networks with superior communication capabilities compared to 

other current networks, where there are three main scenarios for the use of this network, which 

are Enhanced Mobile Broadband (eMBB), which refers to the high rate of transmission and 
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reception of data such as virtual reality, augmented reality, games and video, which depends 

On the population density in urban and rural areas, mobility speed and network power quality 

[3], where the data transfer rate can reach (20 Gbps) and spectral efficiency up to  (30GHz), as 

for the other scenario, which is mMTC, this describes how many devices are connected to the 

network with Low data transfer rate as the number of networked devices can reach up to one 

million devices per square kilometer, while URLLC covers scenarios that require low latency 

with high reliability such as self-driving cars and factory automation[4], the default distribution 

of system components unlike the concept of fixed components in Other systems is one of the 

most important features of the 5G system, where resources are allocated to these components 

according to the required service, which leads to an increase in the efficiency of the network in 

handling traffic, and this is called the concept of a slicing, which works with the three main 

scenarios of the 5G system, this is done by configuring chips inside the Base Station (BS) , 

which in turn serves a service for each type of service. The fifth-generation networks, 

commonly known as the New Radio (NR), employ a broad spectrum of frequencies beginning 

at SUB-6 GHZ. due to the rising complexity of wireless communication networks, and to attain 

millimeter wave (MM-wave) 60 GHZ, it has become necessary to use Artificial Intelligence 

(AI) techniques to manage these networks, which use millions of data and signals at every 

moment and for various fields such as the Internet Of Things (IOT), self-driving cars, 

automated factory management, medical fields, virtual reality and Augmented reality in 

addition to this, highlights the security concern for networks, with the increase in security 

threats, which have become difficult to address with old protection methods, artificial 

intelligence techniques enable the distribution and management of small cells used in 5G 

networks to save time, effort and cost, and also in systems Massive  (MIMO) and Beam 

Forming ( BF) to configure beams, direct the direction of the user and manage the huge amount 

of antennas used in the Base Stations ( BS)  of 5G networks. In 5G, mismatched services can 

operate in the same network architecture by network slicing technology [5], The principle of 

network slicing is due to network computing, communication, and storage resources. Radio 

Access Network (RAN), The RAN chips allocate the radio resources required for URLLC, 

eMBB and Mmtc devices in the time or frequency bands and consistent with the orthogonal 

assignment of wireless communications. Standard orthogonal, thus outperforming non-
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orthogonal multiplexing (NOMA), which only shares radio resources between the same devices 

[6]. 

1.3.1  Enabling Technology Of 5G 

The 5G wireless communication system can achieve the requirements through a set of 

technologies, the most important of these technologies, which enabled the system to reach this 

level of service. 

1.3.1.1   Millimeter waves  

They are waves with a frequency range between (30-300 GHz) that guarantees the general range 

and a wavelength of (1-10 mm), which is the reason for the name. These bands include (39 

GHz, 37-42 GHz, 60 GHz) (figure 1.3), which in total provide a wide bandwidth A frequency 

range of (20 GHz), which is licensed bands, but the most widely used is the (60GHZ) band, 

which is currently used in industrial, research and medical applications, which are waves that 

provide a high data transfer rate [7]. Others broadcast in the form of concentric circles, and 

because they are waves of high frequency and short wavelength, they are not spread over many 

distances and are directed using radiation shaping techniques. These waves are also used to 

connect towers in the fifth-generation networks instead of wired connection, which provides 

high costs of connection between the constellations. 

-  
Figure 1.3: Millimeter Waves. 
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1.3.1.2  Beam-Forming  

It is a method for concentrating the energy that antennas release in one direction while reducing 

the energy in other directions, which reduces the amount of signal interference needed for the 

user and over long distances. As figure below (Figure 1.4) shown the Beam-Forming of 5G, in 

the fifth-generation communication towers, there are hundreds of antennas in the base station 

(BS). These antennas contain arrays arranged in a geometric shape that allows transmitting and 

receiving signals depending on the sensing process, where the user is located. After the user 

service is completed the packet is routed to another user in the same way, and each array can 

send and receive multiple packets to a group of users and cover them. There are two types of 

stations in the fifth-generation towers which are the main stations and secondary stations. 

Transmitting and receiving between the two stations is done point-to-point and the secondary 

station covers users at long distances [8]. 

 
Figure 1.4: Beam Forming Technique. 

1.3.1.3  Massive MIMO 

One of the key innovations in 5G wireless communication networks, it entails the use of several 

antennas both during transmission and reception to improve the ability of devices to exchange 

data and correct faults., as we have hundreds of antennas in base stations (BS) compared to 

dozens in users’ devices, which led to an increase in speed Network, increase network paths, 
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and increase network reliability [9]. In the fifth generation communications networks, these 

antennas are operated in a harmonious manner and are adapted, and the development of the 

MIMO system synchronously With the advancement of digital signal processing methods and 

the encouragement of concurrent user station scheduling, the link's reliability has improved 

thanks to spatial variety and increased energy efficiency, as the base stations check 

Broadcasting periodically to detect unwanted trends to reduce interference and improve access 

time and this is done using artificial intelligence techniques to estimate channel quality[10]. 

The main elements of the Massive MIMO system are pre-encoding, packet formation, 

encryption and detection, and the use of effective modern technologies to implement these 

elements It leads to reducing network complexity, improving detection and shortening training 

time the number of antennas has increased, and as a result, an increase in network capacity with 

high channel width, better power consumption rate, and reduced latency and the system shown 

in figure below (Figure 1.5). 

 
Figure 1.5: Massive MIMO. 

1.3.1.4  Small cell 

The increasing growth of cellular networks during the few years has led to an increase in data 

consumption rates for mobile phones, especially the fifth-generation networks. This increase 
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prompted service providers to develop infrastructure to accommodate this need to use data, 

which requires rethinking the use of large base stations covering a radius of a few miles It is 

not enough to cover or capacity for the enormous number of linked devices and the associated 

costs, so there was a need to use more small base stations, which are known as small cells and 

distributed antenna systems to help improve capacities and at increasing speeds up to (100 MHz 

per second). In some areas, these cells are characterized by a small target coverage area <

10,000	𝑓𝑡!) and have a low capacity with low power consumption (< 30	𝑤) and cover a limited 

number of users (up to 28 users) (Figure 1.6) [11]. With the advent of artificial intelligence 

techniques appeared what is known as Self-Organization Network (SON) cells that organize 

themselves without outside interference. 

 
Figure 1.6: Small Cell. 

1.3.1.5  Full duplex 

Historically, full duplex communication is associated with the origins of human 

communication, and the telegraph can be considered the first application of two-way 

communication in the nineteenth century through the use of one or more pairs of telegraph 

cables to implement synchronous transmission. The best example of this type of 
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communication is phone calls, where all users of the call may simultaneously send and receive 

voice. In traditional networks, two separate channels were used to implement duplex 

transmission in both FDD and TDD. This causes a loss of part of the frequency spectrum, but 

in 5G networks. The same channel is used to implement duplex transmission, which improves 

network efficiency and reduces delays in peripheral devices [12]. The application of this 

technology faces more than one challenge, the most important of which is self-interference, and 

many techniques have been used to overcome this challenge and one of the most important 

These technologies are the antenna cancellation technology as well as the analog circuit 

technology. 

There are two other types of transmission and reception, the first type is Simplex, in which the 

transmission takes place in one direction only, the second type is Half duplex, in which the 

transmission and reception takes place between two devices, the first one sends and the other 

receives only, and after the end of the transmission, the other device can transmit at another 

time, and the duplex types of systems as shown as in figure below (Figure 1.7).  

 
Figure 1.7: Duplex types of systems. 
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1.4  ARTIFICIAL INTELLIGENCE 

When talking about the subject of artificial intelligence, it is necessary to address the first 

pioneer in the field of artificial intelligence (Alan Turing), who was a mathematician from 

Britain and had contributions the disciplines of mathematics, philosophy, cryptanalysis, and 

artificial intelligence,[13] and the paper he published is considered Alan Turing "Computational 

Machines and Intelligence" serves as the beginning to prove the intelligence of the machine, 

and he discussed the conditions necessary to consider the machine as intelligent, characterized 

by the speed of response, like the human being. The large computational led to a wide spread 

of artificial intelligence [14], and its application depends on the study of how the human mind 

thinks in order to solve the difficulties and issues it faces, arrive at the best solutions, and use 

those results as a benchmark for the creation of intelligent systems. (AI) has applications in 

voice and language translation, planning, natural language, expert systems, speech recognition, 

and robotics, scheduling and optimization as shown as in figure below (Figure 1.8). As well as 

artificial intelligence systems replace traditional systems that require the use of a lot of manual 

tuning [15]. At present, artificial intelligence is a very broad topic, where artificial intelligence 
techniques are combined with other technologies to obtain highly efficient systems. 

 
Figure 1.8: Applications of AI. 
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In the field of wireless communication systems, many artificial intelligence algorithms, whether 

recurrent neural networks (RNN), have been investigated to meet the challenges of modern 

wireless networks and because of the challenges that these networks have to meet the 

unprecedented demands to reach a high rate of transmission and reception of data as well as 

record numbers. Because of the low response time, high degree of adaptability in resource 

management and design that characterizes the fifth generation wireless communications (5G) 

networks, giving them the high possibility to implement the requirements of users for these 

networks, the integration of Software-Defined Network (SDN) functions with Virtual Network 

Functions (NVF) led to Reaching the required flexibility, through which the system was 

allowed to modify itself in real time to implement traffic requirements, improve resource 

allocation, user mobility, and improve the system quality. And researching theories of artificial 

intelligence (AI) to provide the necessary flexibility and intelligence in the fifth generation (5G) 

networks. Encrypting strength, modulation, security, interference management, temporary 

storage, network segmentation, and improving energy efficiency. has led many research papers, 

surveys, and programs for learning how to use artificial intelligence in wireless communication 

networks. 

1.4.1  Deep Learning  

The definition of Deep Learning (DL) is an extension of traditional Machine Learning (ML), 

and the expansion is by adding more deep hidden layers (complexity) to the machine learning 

network layer model, and the data in these networks is represented hierarchically by some 

functions used to deal with Data and at multiple levels, Deep learning network (DL) layers may 

learn features from raw data and extract features from those features. Increase classification and 

prediction accuracy and reduce error in regression problems according to the topology used to 

build (DL) networks. Encoding and decoding systems, long-term memory networks, and 

activation functions. These types of deep learning networks have the ability to adapt to a range 

of highly complex challenges and achieve high technical outcomes. With the accuracy and 

accuracy of classification, Deep Science Network layers can handle different types of data such 

as bitmap (images and video), audio data, translation between natural languages, speech 
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recognition, as well as serial data, (Figure 1.9) shows the architecture of a full connection type 

convolutional neural network. 

 
Figure 1.9: Caffe Net, an example CNN architecture. 

One of the deep Recurrent Neural Network (RNN) models based on periodic feedback is Long-

Term Memory Networks (LSTM). Traditional recurrent neural networks' training phase has 

two issues: gradient disappearance and gradient explosion. Long-Term Memory Networks 

(LSTM) fix both issues (RNN). (LSTM) consists of three types of gate structures, but with 

greater computational and time complexity. For this reason, the Gated Recurrent Unit (GRU) 

networks are used, which consist of only the update gate and the reset gate, which leads to 

eliminating the problem of computational and time complexity in (LSTM) and these gates in 

the structure of (GRU) networks give the ability to hold long-term states and remember them 

(Figure 1.10) illustrates a diagram of the (GRU) network.  

 
 Figure 1.10: Structure of a GRU Cell. 
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1.5  RELATED WORK 

In the next part, we will discuss some of the earlier research projects that used artificial 

intelligence methods, especially deep learning, to enhance efficiency and simplify wireless 

networks that employ MIMO (multiple input, multiple output) technology. 

1.5.1  Hybrid BF Techniques 

There are many traditional hybrid BF technologies, and we will illustrate three groups of these 

technologies: the hybrid technology based on the code book, the MIMO package space in the 

literature, and the scattered hybrid BF. The first type, the BF code book-based approach, is 

discussed and studied extensively in [16,17,18] because it combines complex structure with 

high quality. The major criterion for choosing Beams in this system is the greatest (SNR), which 

is in addition to interference [18]. MIMO system is used with one base station (BS) 𝑘, here 

there are NT antennas and LT (RF) chains in Base Station (BS) and at the end of User 

Equipment’s (UE) there is only one antenna, even power distribution is assumed Among the 

users (UE) by the authors of [16], the signal received on the mobile user 𝑘 is given as follows: 

                  𝑦𝑘 = ℎ"#𝑇$%𝑡&&" 𝑠𝑘 + ∑ ℎ"#𝑇$%𝑡&&
' 𝑠𝑗 + 𝑣𝑗(

')"                               (1.1) 

              where hk	 ∈ 	C	NT	 × 1 the channel vector, TRF	 ∈ 	C	NT	 × LT  the RF precede, and 

TBB	 = 	 [t	1	BB, . . . , t	K	BB] 	∈ 	C	LT	 × K  the baseband pr-ecoder. Then, the received Signal 

to interfere Noise Ratio (SINR )at the (kth) user is denoted by : 

SINR=	 𝑃 ℎ𝑘
𝑇𝑇𝑅𝐹𝑡𝐵𝐵𝑘⁄ 2+

𝐾𝜎𝑉2+𝑃 ℎ𝑘
𝑇𝑇𝑅𝐹𝑡𝐵𝐵𝑘⁄ 2+

                                                (1.2) 

P represents the total transmission power while. represents	𝜎𝑉2   White Additive Gaussian Noise 

(AWGN). The RF and baseband primary encoders for mobile users are obtained by tackling the 

optimization problem, as in the following equation; 

{𝑇$%∗ 	, F𝑇$%" ∗}"-.	( H = argmax∑ 𝑙𝑜𝑔!(
"-. (1 + 𝑆𝐼𝑁𝑅")                  (1.3) 
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The T𝐑𝐅	i, j represents the jth  column element and the ith  row element in the TRF matrix. 

However, the hybrid BF based on the codebook is still complicated to search for the ideal 

configuration and compared to the array systems for large antennas is very high. In [16] 

advanced near-perfect codebook-based algorithms for hybrid RF are presented. In [17] 

depending on the supporting beams, we reduce the number of potential RF carriers, this depends 

on a number of variables, including the acting force and the direction of the Angle-of-Arrival 

(AoA), and then a full investigation is carried out in the small group that contains the beam 

converters. The authors of [18] propose to provide a feedback channel for the multi-user hybrid 

BF algorithm that has two phases that are low in complexity and also to find the best packet 

converters by reducing the search space on the packet offers available in the codebook, special 

suggestions for iterative algorithms are presented in [19], in [20] it is suggested that the 

estimation of the paths with a large dominance of the channel and the construction of the hybrid 

packet converters as a basis for designing the BF codebook, and by iterative search of the 

codebook, the parameters of each path are approximated in all stages of the algorithms, in [21] 

the authors suggest Packet aggregation techniques to get the best packets by utilizing Direction-

of-Arrival (DoA) and direction-of-departure (DoD), In [22] the proposed algorithms are 

described as near-perfect. These semi-perfect algorithms use scattered approximation 

techniques containing different literatures that mixed between the hybrid (BF) and the scattered 

channel estimation technique in which the measurement matrices are the same as the hybrid 

beam converters and the channel estimation issue is A discrete estimation problem which is 

used by compression sensing-based algorithms to solve. In [23] the MM wave system which 

includes BS base station and 𝐿# RF and 𝑁𝑇 chains per mobile user k, pre-training and vector 

combination, is searched in BS and kth the mobile user is presented as 𝑃0 and 𝑞1 and then user 

k is given the received signal: 

                               𝒚𝒏,𝒎= 𝒒𝒏𝑯𝑯𝒌𝒑𝒎𝒔𝒎 + 𝒒𝒏𝑯𝒏𝒏,𝒎                                           (1.4) 
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where 𝐻" ∈ 	𝐶	𝑁𝑅 × 𝑁𝑇 channel matrix between the ( BS ) and the 𝑘𝑡ℎ user and 𝑠0 the 

precoding vector contains the training symbol 𝑃0  , In the training phase, the average power 

used per transmission is set to P, and It's believed that 𝑠0 = √ P. 36 , the received signal matrix 

is defined as: 

                                  Y = c𝑷𝑸∗𝑯𝒌𝒑 + 𝑵,                                                   (1.5) 

where Q = [𝑞., ..., 𝑞78] and P = [ 𝑝. , ..., 𝑝78] are the measurement matrices. N is an 𝑁$ × 

𝑁# 	noise matrix. The authors of [23] then victories the received signal matrix Y to take use of 

the channel's sparseness as: 

                                  Y=√𝑷	(𝑷𝑻⨂𝑸∗)(𝒂𝑻∗ (𝝓𝒌)	⨂𝒂𝑹(𝜽𝒌)𝜶𝒌 + 𝒗,                        (1.6) 

where 𝜶𝒌 is the complex path gain, 𝑎# (𝝓𝒌) and 𝑎# (𝜽𝒌) are the BS and kth mobile user's 

antenna array response vectors , respectively. Moreover, ( AoDs ) and ( AoAs ) are taken from 

a grid of 𝑁 and 𝑀 points, respectively. Then, y in (1. 5) is approximated as, 

                                   Y=√𝑷	(𝑷𝑻⨂𝑸∗) (𝑨𝑻	⨂𝑨𝑹	)𝒁𝒌 +v,                                     (1.7) 

Initially the 𝑃-training pre-configuration matrix is built at the base station of  [𝑃];,' =

𝑒'∅;,'where 𝑗∅𝑖, 𝑗 is taken by random quantitative angles {0, !=
7!
" 	 , … . ,

>7!
"?.@!=

7!
" 	}.  

		𝑁# × N matrix 𝐴#? and 𝑁$× M matrix  𝐴$? representing the dictionary matrices, 𝑁A# representing 

the building blocks, the Q matrix that collects the training built by each mobile user and then 

each entry Φ = 𝑃# ⊗𝑄∗is	set	to		𝑒'B is assigned to Q by taking models Samples from angle 

𝑌	randomly from a quantum package, and by recovering the 𝑍𝐾 scattered vector support by 

OMP the user guesses the mobile phone 𝑘𝑡ℎ AOD, AOA for his channel and independent  to 

the following equation : 

                             𝒔𝒖𝒑𝒑𝒐𝒓𝒕	(𝒁𝒌) = 		𝐚𝐫𝐠𝐦𝐚𝐱𝚽∗𝚿∗𝒚,                                      (1.8) 
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where Ψ = 𝐴#∗⊗ 𝐴$. Then, the AoD 𝜃"^and the AoA 𝜙"^ are estimated by using support (𝑍"). 

The RF combining vector of the 𝑘𝑡ℎ mobile user 𝒓𝒌 in [23] is designed as 𝑟" = 𝑎$(𝜃(^). After 

each mobile station sends the index of its estimated AoD to the BS, the BS computes its RF 

precoding matrix as 𝑇 = [	𝑎#(𝜙.^ ), …… . , 𝑎#(𝜙(^ )	]. Hybrid BF for multi-user massive 

(MIMO) systems using WMSE sum-squaring error and according to the algorithms suggested 

by the authors of [24]. 

1.5.2 Wireless Networks with Massive MIMO 

Number of antennae growing being used in base stations (BSs) is directly proportional to the 

high possibility of increasing the data flows through the network. This increase in the data 

transfer rate is accompanied by an increase in the reliability of communication by spatial 

diversity, which leads to a reduction in energy emission and a high efficiency of the network 

away from The system's complexity and the quantity of measurements, and because the 

Massive (MIMO) system has the possibility of wide freedom and greater selectivity in the 

process of sending and receiving data with a high possibility of canceling interference, the 

Massive (MIMO) system also provides a network with latency by avoiding transmissions in the 

directions that are not required by the base stations ( BSs). Combining Massive (MIMO) with 

beamforming (BF) techniques, this procedure enhances the signal-to-noise ratio (SNR) while 

smoothing out vanishing droplets [25]. The authors present in [26] an important matter which 

is the relationship between the large correlation between number of antennae used in and 

between the higher improvement of the channel estimation quality for each antenna and the 

increased response. The high routing of the signal in the right place and the lack of interference 

to multiple users by using the Massive (MIMO) A major boost in network capacity, energy 

efficiency, and maintaining a low rate of heat emission was made thanks to multi-spatial 

systems [27]. The authors of [28] presents the view of the participation of all users in the 

multiplexing gain. Therefore, the antenna array deployment process is done in the base stations 

(BS) only to reduce the costs resulting from the deployment of these antennas in the base 

stations (BSs). Participation and providing more complications for used equipment and lower 

costs in addition to preventing interference and reducing the impact of noise and fading. In [29] 
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the authors suggested the literature for cooperative or non-cooperative massive MIMO systems 

where all BS serve a specific user and are called networked mega-MIMO systems. These 

connected BSs have relatively few antennas, the communication between these base stations is 

data and Channel Status Information (CSI) shared by downlink (D-Link). The data is flowed in 

a participatory form from BS using Beam-Forming (BF) technology at some times, which often 

leads to the prevention of interference cases. The authors of [30] focused in their study the 

challenge based on Channel Status Information (CSI) feedback in massive MIMO systems, 

especially the use of spatial-temporal correlation to reduce the feedback burden and to reach an 

accurate estimation of the channel state by transforming the coherent (CSI) into a sparse vector. 

It is not connected in some base stations by means of pressure sensing (CS) and on the basis of 

this principle, protocols were developed for reactions (CSI) and many advanced algorithms 

were presented, but these algorithms face many challenges, including that (CS) algorithms are 

slow in Reconstruction of iterative signals, as well as the assumption based on widely scattered 

channels in the rules, and these channels may not be scattered in the first place, in addition, the 

random projection of (CS) algorithms does not absorb the channel structures sufficiently, for 

this reason, artificial intelligence (AI) techniques and Especially Deep Learning (DL) in the 

face of these challenges. In [31] proposes an approach based on deep learning (DL) methods in 

massive MIMO to encode Channel State Information (CSI), deep learning (DL) which is used 

to perform a specific task by inserting large samples into the network to train multiple neural 

layers. Layers, initially used for deep learning (DL) in the reconstruction of natural images and 

has achieved great success in this field, which led to its use in the reconstruction of wireless 

channels, despite the fact that reconstruction of wireless channels is more complex or difficult 

than reconstruction Natural images, but experiments also showed success in the (CSI) recovery 

process with high quality and improved by using one of the types of deep learning networks 

(DL), which is the sensor network (encryption) and recovery (decryption), which is called 

(CsiNet ). Through training data, this network learns to transition from the original channel 

matrix to condense representations and utilize the channel structure effectively, eliminating the 

random drop approach used in the prior conventional methods of coding. On the other hand, 

(CsiNet) network Reverse conversion and recovery of original channel arrays from encrypted 

words, avoiding redundancy (recursive algorithms) using a decoder, and returning code-words 
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to the base station. Since mm-Wave MIMO systems need a radio frequency (RF) chain for each 

antenna, the study in [32] focuses on the methods used to reduce the complexity of radio 

frequencies. However, because each antenna in these systems requires an RF chain, this 

procedure results in a significant energy consumption, high device costs, and an increase in the 

energy emitted by the many antennas used in Massive MIMO systems. Due to these factors, the 

study proposes two methods—the lens array-based hybrid pre-coding technique (LAHP) and 

the phased array-based hybrid pre-coding technique—to lessen the complexity of radio 

frequencies while converting from microwave to millimeter frequencies (PAHP). On the data 

transmission side, the process of selecting the (LAHP) network is done on the basis of low 

energy consumption and at a lower cost by traditional packets for channel estimation, while we 

use the retrieval problem of the scattered signal in the process of estimating the packet space, 

as well as the comparison between the efficiency of the two technologies about energy 

effectiveness and high capacity On the treatment of interference between cells and the 

percentage of error in estimating channel information and conditions. 

1.5.3  Artificial Intelligence for Wireless Communications 

The authors of [33] present the various techniques used to collect channel information, 

including the experimental channel estimation of the MIMO multiplex system, where one of 

the real data carriers sends sequences of experimental signals that are predetermined and then 

the highest probability is taken by Machine Learning techniques (ML) and that Estimating the 

channel states by determining the values that increase the probability of the previously sent 

indices relative to the received symbols by adopting one of using techniques like the Minimum 

Mean Square Error (MMSE), It lowers the average error between the channel coefficient 

matrix's real and estimated values, as for the Least Squares method (LS) It reduces the squared 

distance between the experimental symbols vector and between the received symbols vector, 

and these methods are considered the most popular. The authors of [34] present proposals in 

wireless communication systems in which artificial intelligence (AI) algorithms are used in 

dealing with high data traffic and in various scenarios, which are characterized by being less 

computational complexity than traditional algorithms while maintaining high performance rates 

for those systems, achieving The authors in [35] in the approaches presented by artificial 
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intelligence (AI) techniques to help find appropriate solutions to the challenges facing the 

application of modern communication systems such as (channel estimation (CS), massive 

MIMO communication systems, millimeter waves MM wave), channel state information (CSI), 

beam-forming ( BF)  , additionally, the Non-Orthogonal Multiple Access proposal (NOMA) 

schemes in conjunction with long-term memory (LSTM) to determine channel characteristics, 

in addition to the use of deep learning techniques ( DL) by DNNs along with massive MIMO 

systems for direction of arrival (DoA) and channel estimation and provide a comprehensive 

review of all solutions offered based on the deep learning literature ( DL) of its various types 

to help develop scenarios for the fifth generation of communications (5G), especially with the 

great successes of (AI) technologies and algorithms in other fields. In the literature [36] in the 

narrow beamforming (BF) system, a massive MIMO system with millimeter wave (MM wave) 

is proposed based on deep learning (DL) algorithms, where the geometric mean analysis (GMD) 

method is adopted to perform the auto-encoding process for digital devices and on the other 

hand, the paper presents a schematic for a narrow beamforming (BF) system. This scheme 

performs diversified transmission with relation to the state of the channel or on the spatial 

multicast and depending on the method of link conditioning and by machine learning algorithms 

(ML) and in all methods that depend on Deep learning (DL) datasets that are trained to select 

packets are built in various systems scenarios (MM wave and massive MIMO). In addition, in 

the process of estimating digital and analog encoders based on the different channel states of 

the BF system, DNNs are trained with the parameters resulting from those states of the channel. 

In [37] a proposal was made to reduce the number of radio (RF) chains through a beam space 

channel model based on lens antenna array, but the big challenge in massive MIMO systems 

and The support detection (SD) method is used to prepare the channel estimation scheme, in 

the massive MIMO system when we have a limited number of radio chains and a large antenna 

array, which results in the inability of the received signal matrix from the lens antenna array to 

focus and scatter the energy. This approach breaks the channel estimation challenge down into 

a number of smaller issues , and in another study in The beginning is the creation of the channel 

matrix, then using the (SCAMPI) algorithm, which provides two-dimensional (2D) natural 

images, then the approximate analysis of the algorithm derived from the image retrieval method 

and the use of the( EM)  prediction maximization algorithm to gather Gaussian mixture (GM )  
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parameters from the current data and consider the Massage – Passing - interface (SCAMPI) 

algorithm as a distributor General probability of a Gaussian Mixture (GM) , In this study, the 

Saleh-Valenzuela channel is relied on in the wireless communication model of mm-Wave 

systems, and the packet space channel matrix is expressed by the following equation: 

𝑀 = ,92
:;1

∑ ∝, 𝐴(𝜑,:
,<1  ,𝜃,),                                       ( 1.9) 

 𝐻	 ∈ 	𝑅7∗D represents the beam space channel matrix, 𝑃	 + 	1 the number of paths. The term 

∝; represents the path gain and the values𝜑, and 𝜃, refer to the height and azimuth  ( AoAs ) 

of the incoming waves and the antenna array response matrix By 𝐴(𝜑, ,	  ,𝜃,)	 , for signal 

recovery, estimating the massive  MIMO beam space channel is a typical issue. Initially, by 

routing H to rest, the beam space channel vector ℎ	 ∈ 	𝑅D7∗.	 is obtained in the uplink training 

phase. , at the base station (BS) the user sends the training code to the base station (BS) and the 

user is given the received signal vector  𝑦 ∈ 𝑅D7∗` 

𝑦	 = 	ℎ𝑠	 + 	𝑛,		                                                      (1.10) 

where 𝑛	 ∼ 	𝑁	(0, 𝜎 ∝1! 𝐼) represents a vector of Gaussian noise. Given a receiver choice 

network W, the received signal r from the RF chain can be represented as:  

	𝑟	 = 	𝑊𝑦	 = 	𝑊ℎ	 + 	𝑛¯,                                                    (1.11) 

After the process of determining the network at the receiver, n¯	 = 	Wn  represents the 

equivalent noise that is dependent on	𝑵	(𝟎, 𝝈 ∝𝒏𝟐 𝑰)		, each element in the array W is normalized 

by dividing √𝑴𝑵, and the antenna array response matrix links the components of the 

undeceived beam space channel vector, and it can be applied the Learned De-noising-Based 

Approximate Message Passing (LDAMP) network resulting from the recovery of natural 

images, because this method is very similar to two-dimensional (2D) natural images, in the 

sense that the channel is scattered and the variations between nearby elements in the matrix are 

very accurate, and thus exploiting the correlation in estimating the beam space channel. The 𝑳 

neural layers that make up the (LDAMP) network are connected in series and these neural layers 
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share the same structure. Each layer contains the same slider 𝐷𝜎ˆ𝑙(·),and the same divergence 

estimator 𝑣𝐷𝜎ˆ𝑙(·), and the weights used. (DnCNN) is used to update 𝒉 and it is estimated.  

𝑍GH. = 	𝑟	−	𝑊ℎˆ	GH. .
"
𝑍I	𝑑𝑖𝑣𝐷𝜎ˆ𝑙(	ℎG 	+ 	𝑊# 	𝑧G)		                     (1.12) 

ℎˆ	IH. = 𝐷J#(	ℎG 	+ 	𝑊# 	𝑧G)			                                          (1.13) 

where ℎˆI is the 𝑙 − 𝑡ℎ input layer for the channel, 𝑍G displays the𝑙 − 𝑡ℎ layers of the residual 

vector's input, and 𝜎ˆG indicates a denoiser parameter, which is described as   𝝈ˆ𝒍 	=	∥ 𝒛𝒍 	 ∥

𝟐√𝑲. If we consider the denoiser's contribution, 𝑿𝒍 	= 	𝒉ˆ𝒍 	+ 𝑾𝑻	𝒁𝒍 as a noisy channel 

vector: 

𝑋I = ℎ +	nˆG                                                     (1.14) 

And  the equivalent noise nˆG 	= 	 ℎˆ	G − h +W# 	zG 	∼ 	N	(0, (𝜎G)!I).The process of estimating 

the channel 𝒉 on the part of the denoiser   𝐷=*  (·) by eliminating the noise equation 𝑛ˆG from 

the noisy channel 𝑋G The estimated value of the 𝑍G vector is what determines the equivalent 

noise variance rate  (𝜎G)!	This eventually declines as the number of layers increases 

continuously, and convergence takes place Moreover, by 𝑍G 	eliminating the bias in the median 

solutions, 𝑑𝑖𝑣𝐷𝜎ˆG(ℎG 	+ 	W# 	zG 	)/𝐾 and then the model image reducers approximate thenˆG 	 

the following Monte Carlo approximation, equivalent noise values to the additive white 

Gaussian noise (AWGN) values is used to calculate the difference for that Due to the difficulty 

of obtaining an accurate expression for 𝑑𝑖𝑣𝐷𝜎ˆG (·) we give the slider 𝐷=*  (·)  and using an 

independent random vector𝑏	 ∼ 			 (0, 𝐼)	and use the following equation to estimate the 

divergence. 

𝑑𝑖𝑣𝐷𝜎ˆG =	 lim
∈→N

𝐸O {	𝑏# ±
𝐷𝜎𝑙 	>P

#H∈O@?𝐷𝜎𝑙>P
#@

∈
²	}                               (1.15) 

In (LDAMP) networks, channel estimation is highly dependent on the splitter. Compared with 

other techniques, the (DnCNN) eliminator is faster and more accurate due to its high ability to 

deal with the problem of reducing Gaussian noise. The network layer structure plays a major 
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role in the network being very accurate and also reduces the Training times. In [38] the authors 

propose to integrate machine learning applications into modern wireless communication 

systems to perform the process of specifying the modulation grooves and coding through 

parenthetical learning classification and using Support Vector Machines (SVM). ), that the 

optimization processes on the network in this literature differ from the traditional methods, but 

the optimization is done by generating data (codes) by continuously developing the model 

through training for long periods of multiplex-multiple-receive (MIMO) communication 

systems for spatial diversity by integrating deep learning techniques And the automatic 

encoders through a neural network (NN) trained to learn the bananas sent through the Rayleigh 

channel, and the process of estimating the symbols is done with high accuracy by removing the 

interference in the receiver, as the encoder learns the conditions of the channel (CSI) 

synchronously with the transmitted symbols. The production of the 5G of mobile systems (5G) 

is gradually meeting the requirements of more stringent end-user applications [39], [40]. It is 

challenging to monitor and manage data for many network parts due to the growing diversity 

and complexity of the mobile network. Thus, integrating flexible machine intelligence into 

future mobile networks is a subject of unmatched scientific interest [41]. This trend is reflected 

in the creation of Network systems that support machine learning techniques, as well as the use 

of machine learning (ML)-based solutions to issues ranging from malware detection to Radio 

Access Technology (RAT) selection [44], [45]. Systematic information value extraction from 

traffic data is made possible by ML, as is the automatic detection of links that would otherwise 

be too difficult for human experts to identify [46]. Deep learning, a machine learning pioneer, 

has demonstrated excellent performance in fields including computer vision [47] and Natural 

Language Processing (NLP) [48]. Researchers working in networks are also starting to 

understand the value and potential of deep learning and are investigating how it might be used 

to address difficulties unique to mobile devices. Field of networking [49], [50]. It makes sense 

to integrate deep learning into 5G wireless networks and mobile networks. Particularly, because 

they are frequently gathered from various sources and in various forms, the data produced by 

mobile settings are becoming more and more heterogeneous. In contrast, because big data uses 

hierarchical feature extraction as opposed to domain knowledge, it enhances the performance 

of deep learning. In essence, this means that data may be incrementally abstracted, and 
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information can be efficiently extracted while requiring less preprocessing. Deep learning can 

draw inferences in milliseconds thanks to GPU-based parallel computation. Due to the removal 

of run-time constraints, high-accuracy and speedy network analysis and management are now 

possible, beyond the limitations of conventional mathematical techniques (such as convex 

optimization, game theory, and meta-inference). 

1.5.4 Neural Network 

Chang et al. in [51] apply convolutional neural networks (CNNs) to equalization, producing a 

smaller error vector magnitude than multi-modulus algorithm- or recursive least squares-based 

methods. Deep learning-based de-mapping is examined in [52]. where Shental and Hoydis 

recommend utilizing deep neural networks to effectively calculate bits. (LLRs) of equalized 

symbols are log-likelihood ratios. The proposed de-mapper is based on deep learning. is shown 

to achieve precision that is comparable to that of the ideal log maximum a-posteriori rule, but 

at a far reduced computing cost. Additionally, numerous articles recommend integrating deep 

learning components into the standard receiver processing flow. As long as the prerequisites 

are satisfied, [53]– [54], each of them surpassing the conventional receiver benchmark Training 

is carried out. Some academics have also considered the potential of building larger receiver 

parts with just one neural network. For instance, Ye et al [55].'s study of coupled channel 

estimation and signal identification makes use of deep learning. A fully connected neural 

network processes the data signal and the pilots there before doing the detection. This type of 

completely trained receiver is shown to function noticeably better than a normal receiver based 

on minimal mean square error when there aren't many channel estimate pilots or when the 

Cyclic Prefix (CP) isn't present (MMSE). In contrast, a receiver is constructed in [56] that 

calculates bit estimates directly from a time-domain RX signal, displaying exceptional 

performance at low to medium SNRs. The CNN-based method outperforms a linear least 

squares-based receiver even while it lags behind an MMSE-based receiver and a receiver with 

perfect channel information at high SNRs. Deep learning-based end-to-end systems, in which 

the transmitter and receiver are simultaneously learned from the data without any pre-specified 

modulation scheme or waveform, have also been thoroughly examined [57]– [58]. The capacity 
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of these methods to outperform traditional heuristic radio connections has been established, for 

instance by acquiring a better constellation shape. 

1.5.5  End-To-End System  

End-to-end learning has drawn a lot of interest recently and is seen to hold promise as a 

technology for future wireless communication systems [59], [60]. A single auto-encoder Neural 

Network (NN), trained to maximize information rate, is used as the transmitter, channel, and 

receiver in this system [61, 62]. Since its introduction in wireless communications [63], End-

to-End learning has been used in various fields, including optical wireless [64] and optical fiber 

[65]. However, the majority of the research is either experimental but done in static settings 

[66] or simulation-based and uses simple channel models like Rayleigh block fading or additive 

white Gaussian noise (AWGN) (RBF). Comprehensive learning across OFDM channels is 

initially taken into consideration in [67]. The receiver is unable to benefit from the rhythmic 

spectral correlation of the OFDM channel due to the autoencoder's restriction to operating 

across individual Res, this approach is broadened in [68] to incorporate the PAPR technique's 

instruction. [69] co-optimizes the primary decoder and the decoder while taking into 

consideration one-bit quantization of the received OFDM signal in order to make it easier to 

reconstruct the broadcast signal. Recent years have seen relatively little focus on OFDM 

systems' neural receiver. The remaining convolutional NN is taken in [70], a convolutional NN 

that operates over a substantial number of subcarriers and OFDM symbols. Bit error rates 

(BER) in realistic 3GPP channel models are comparable to those possible with complete 

channel information. Additionally, it has been demonstrated that this neuronal receptor is more 

resistant to interference than traditional methods. The authors created a thorough teaching 

strategy in [71]. shared source and channel coding architecture without the need for pilots. On 

this subject, there is a wealth of literature that contains several systems that typically call for 

sophisticated detection algorithms.  
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2. MATERIALS AND METHODS 

Wireless communications are considered one of the basic components of modern life and this 

type of communications has witnessed a great development in recent times, many researches 

and studies have been submitted to develop wireless communications systems in the field of 

increasing data transmission rates and ways to reduce energy consumption rates and address 

anomalies in wireless communication systems. Using a neural receiver that has been trained to 

take the place of the channel estimation, equalizer, and mapping removal in accordance with 

the system model diagram, we will create a communication system based on a multiple-input 

and multiple-output (MIMO) communication system to send and receive data between a user 

equipment (UE) and a base station (BS) for both Uplink (UL) and Downlink (DL). 

As the figure following (Figure 2.1) is an explanation of the most important components of the 

system model.  

 
Figure 2.1: A graphical representation of the system model showing each necessary component. 

2.1  CODING  

In the presented system model encoding and decoding are done by Low Density Parity Chick  
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(LDPC), which was first introduced by the scientist R.GALLAGER in the sixties of the last 

century and was rediscovered by MACKAY&NEAL in 1996, and this method is considered 

the preferred method in performing the encoding and decoding process In modern wireless 

communication systems, because of its parallel implementation characteristics and good error 

correction performance, LDPC codes are the most used in Forward Correction Codes (FEC), 

as well as its codes served as a basis for modern coding theory, due to its dependence mainly 

on the SHANON theory [72] In broadband communications with high data rate, LDPC offers 

promising solutions. For the fifth generation of wireless communication technologies, the 

Third Generation Partnership Project (3GPP) established two base graph matrices (BG1) and 

(BG2) to facilitate scalable data transmission (5G), (LDPC) was used in the channel error 

correction schemes through (QC-NR-LDPC) symbols. (Figure 2.2) shows the basic structure 

of the (QC-NR-LDPC) structure. 

 
Figure 2.2: Drawing of the Quasi-Cyclic (QC-LDPC) codes.  

Iterative decoding of (LDPC)method is strong in encoding noisy channels with high fading, and 

the difficulty in its application lies in the problem of how to merge the detector and modulator 

files with the code. This difficulty is dealt with by assigning the random LDPC encoded bits 

directly. On the modulated signals, design the LDPC code by arranging the maps in the receiver 

[73]. Consider LDPC code with length	n and design rate	𝑅 = 𝐾/𝑛   .  This symbol's iterative 

decoder can be shown as a graph. It has checking nodes 𝐾 − 𝑛, edge interleaves, and variable 

nodes. The number bit in the cipher is represented by the	𝑖𝑡ℎ variable node. A bit participates 
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in 𝑑Q
(;)the parity check, then its node The edge𝑑Q

(;) enters the edge interleaving. Edge 

interleaving Connect variable nodes to validate nodes, each validation node It represents the 

equivalence check equation. Check	𝑖𝑡ℎ the check	𝑑T
(;) node So bits have 𝑑T

(;)edges. Variables 

and check groups.  The nodes are called Variable Node Decoders (VNDs) as well as Check 

Node Decoder (CND). Repeated action decodes by using message relaying between VND and 

CND, it is put into practice. The decoder's architecture is shown in (Figure 2.3). 

 
Figure 2.3: An LDPC code iterative decoder 

based on a combination of external single parity codes and internal duplicate code. this insight 

explains how LDPC decoding and other iterative decoding techniques, such B. Turbo 

decoding, are closely related [74]. 

2.2  MODULATION 

In electronics, the technique of imprinting information (voice, music, images, or data) on a radio 

frequency carrier by changing one or more properties of the wave in response to the information 

signal. There are different forms of modulation, each designed to alter specific characteristics 

of the carrier. The most frequently changed properties include amplitude, frequency, phase, 

pulse rate, and pulse width. Modulation, in electronics, the technique of leaving information 

(speech, music, images, data) on a radio frequency carrier by changing one or more properties 

of a wave in response to an information signal. There are different forms of modulation, each 
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designed to alter specific characteristics of the carrier. The most frequently modified properties 

include amplitude, frequency, phase, pulse rate, and pulse width. Modulation, in electronics, is 

the method of printing information (sound, music, images, or data) on a radio frequency carrier 

by changing one or more wave properties in response to an information signal. There are 

different forms of preform, each designed to alter certain characteristics of the carrier. 

Frequently changed properties include amplitude, frequency, phase, pulse rate, and pulse width. 

Modulation, in electronics, is the method of leaving information (speech, music, images, or 

data) on a radio frequency carrier by changing one or more wave properties in response to an 

information signal. There are different forms of preform, each designed to alter certain 

characteristics of the carrier. Frequently modified properties include amplitude, frequency, 

phase, pulse rate and pulse width, in this model, Quadrature Amplitude Modulation (QAM) 

will be used. It can be applied to many formats: Although there are performance differences 

and trade-offs between 8QAM, 16QAM, 64QAM, 128QAM, 256QAM, QAM or quadrature 

amplitude modulation, it does provide some notable benefits for data transfer. SNR suffers 

when data rates increase from 16QAM to 64QAM, from 64QAM to 256QAM, etc. Many data 

transmission systems switch between QAM, 16QAM, 32QAM, and other QAM commands 

[75], depending on the state of the link, higher data rates can be exchanged to improve flexibility 

and reduce Bit Error Rates (BER). Including various forms of wireless communication, mobile 

communication, and the like. 

 
Figure 2.4: Mapping the Bit Order for a 16QAM signal. 

When there is sufficient headroom, higher order QAMs can be utilized to achieve faster data 

rates, however lower orders are employed when the link deteriorates to retain noise margin and 
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guarantee low bit error rates. As the QAM order increases, the distance between distinct 

locations in the constellation diagram gets closer, and the likelihood of introducing data 

mistakes rises. Employing higher order QAM forms requires exceptionally low Eb/No data 

mistakes for the link. In order to maintain the bit error rate as Eb/No declines, the power level 

must be increased or the QAM order must be decreased. Therefore, performance, an acceptable 

bit error rate, and data rate and QAM modulation order must all be balanced. Although more 

error correction can be done to prevent network degradation, it also slows down data 

transmission, in numerous radio communication, wireless communication, and mobile 

communication systems, QAM is used. But certain QAM variations are employed for certain 

standards and applications. The (SNR) and data throughput need to be balanced. The amount 

of data that can be transmitted under ideal conditions increases as the QAM signal order rises, 

e. g. from 16QAM to 64QAM, etc. The disadvantage of this is that it demands a higher signal-

to-noise ratio. Although the order of the modulation formats is fixed on some platforms, 

bidirectional links on other systems allow the modulation order to be varied to increase 

throughput for a given link state. The level of error correction has also changed. By altering the 

modulation sequence and error correction, the data speed can be changed while maintaining the 

desired error rate. In digital cable TV and cable modem applications for domestic broadcasting, 

64 QAM and 256 QAM are frequently used. Because transmission is only one-way, the QAM 

modulation order must be set at the transmitter, and there are thousands of other applications 

where using a dynamic adaptive modulation form of receiver is not feasible. The order of QAM 

modulation and error correction can be dynamically adjusted depending on the link between 

the two ends for many types of wireless and cellular technologies. The complexity of network 

adaption approaches increases as data rates and spectral efficiency requirements climb. To 

enable the connection to quickly adjust to the current connection quality and provide optimal 

data throughput, transmit power balancing, QAM ordering, forward error correction, etc., the 

data channel is carried over the cellular signal. The complexity of network adaption approaches 

increases as data rates and spectral efficiency requirements climb. To enable the connection to 

quickly adjust to the current connection quality and provide optimal data throughput, transmit 

power balancing, QAM ordering, forward error correction, etc., the data channel is carried over 

the cellular signal. The position of the QAM states, squared of the modulation amplitude, are 
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displayed in the constellation diagram. There are more points in the 16QAM constellation the 

higher the modulation order. The vertical axis is made up of square or "Q" elements, and the 

horizontal axis is made up of in-phase or "I" elements. I have a few posts to make. H. a particular 

pairing of I and Q for various data symbols. The 16QAM modulation format is depicted in the 

following figure below (Figure 2.5). 

 
Figure: 2.5: 16QAM Constellation. 

This QAM constellation diagram illustrates how the point spacing on the constellation 

decreases with increasing modulation order. Therefore, even a small quantity of noise might 

result in a larger issue; the larger the area a point on the constellation covers, the higher the 

noise level caused by the weaker signal. If it grows too big, the receiver will have trouble 

locating the broadcast signal in the constellation, which could result in mistakes. Additionally, 

it has been discovered that the amount of amplitude variation on the transmitted signal increases 

with the QAM signal's modulation order. Being a highly ordered modulation type, QAM has 

the benefit of enabling more data to be conveyed per token. The power spectrum efficiency and 

modulation bandwidth of higher-order QAM formats are comparable to those of M-formed 

PSK-ray formats, which means that for the same phase-shift switch configuration, square-

amplitude modulation and phase-shift switch both have the same levels of power spectrum 

efficiency and bandwidth. Higher order modulation rates can lead to much quicker data rates 

and greater levels of spectrum efficiency for the radio communications system, but these 

advantages come at a price. The higher order modulation schemes are far more prone to noise 

and interference. This has led to the widespread use of dynamic adaptive modulation techniques 

in radio communications systems today. To get the highest data rate possible under the given 



32  

conditions, they identify the channel characteristics and adjust the modulation technique. As 

errors increase and more data must be delivered again as signal to noise ratios deteriorate, 

throughput will slow. By lowering data errors and resending’s, switching back to a lower order 

modulation approach will increase the link's dependability. When a high level of resends are 

required due to data mistakes that occur when a high order modulation scheme is used, it is 

likely that the data rate will drop below that of the lower order modulation level. The best 

throughput for the current network conditions can be reached by choosing the appropriate order 

of QAM modulation and having the flexibility to dynamically change it. Lower bit error rates 

can be accomplished by reducing the order of the QAM modulation, which lowers the amount 

of error correction needed [76]. The throughput can then be maximized for the current link 

quality. Today, the majority of wireless communications systems, including Wi-Fi, mobile 

communications, and many other data transmission channels, accept and incorporate dynamic 

adaptation of the sequence of modulation as an essential component. 

2.3  OFDM  

Orthogonal Frequency Division Multiplexing disperses data information using a large number 

of low-rate sub-carriers. OFDM's resistance to channel dispersion and ease of estimating the 

phase and channel in a time-varying environment are some of its main advantages. Wireless 

LAN and digital audio/video broadcasting (DAB/DVB) are two RF applications that have 

benefited from the development of reliable silicon DSP (LAN) technology. However, OFDM 

has two inherent flaws: sensitivity to frequency and phase noise, and the maximum to average 

power ratio (PAPR) , the bit-rate  digital information signal 𝑅O is converted into 𝑀	 = 	𝑛! 

symbols using (OFDM) (Each symbol represents a complex number that represents the M-array 

modulation scheme's amplitude and phase ), divides the generated symbol stream 

(rate Rs = Rb/n) into 𝑁 concurrent streams, each with a 𝑅 OFDM rate equal to 𝑅𝑠/𝑁, and 

modifies every stream onto a different 𝑁 carrier , Each parallel information flow can be 

retrieved independently thanks to the 𝑁 frequencies of the mutually orthogonal carriers during 

one OFDM symbol period, 𝑇𝑂𝐹𝐷𝑀	 = 	1/𝑅𝑂𝐹𝐷𝑀. In the figure below (Figure2.6) shows the 

spectrum of a few nearby(unmodulated) OFDM carriers. 
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Figure 2.6: Five adjacent (unmodulated) OFDM carriers. 

And to show the basic process of multiplying parallel symbol current on orthogonal carriers as 

shown in figure below (Figure 2.7). 

 
Figure 2.7: Conceptual representation of OFDM transmitter. 

This is OFDM's main advantage since the original symbol stream's symbol rate is N times lower 

than the symbol rate of this one and Nn is less than the original bit stream. Early codes may 

overlap with later codes due to the radio channel's time dispersion, which is brought on by 

energy flowing between the transmitter and receiver over various paths, some of which include 
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reflection from far-off objects (ISI). By lowering each orthogonal channel's symbol rate 

(calculated as a percentage of the OFDM symbol time), the interference's negative effects on 

BER are significantly lessened. Real experiences show that phase noise and frequency offset 

cause the (SNR) for (OFDM) systems to degrade Each OFDM token can be made to last longer 

by adding a "periodic prefix" to maintain orthogonality. The prefix is a copy of the final segment 

that is added to the OFDM code. Prefix must be at least as long as the largest delayed 

(significant) multipath echo in order to be genuinely effective. One of the advancements that 

has made OFDM a more appealing alternative for radio communication in challenging 

multipath environments is the (extremely successful) Fast Fourier Transform (FFT) approach. 

The capacity and phase of a carrier are determined by the impact of the symbols combined 

number on that carrier. The amplitude and phase of the OFDM signal spectrum are thus 

determined by (N) of these symbols for one period of OFDM symbols (at different carrier 

frequencies). Thus, the FFT can be used to retrieve (demultiplex) symbols in the receiver and 

the fundamental OFDM signal in the sent can be produced using the inverse Fast Fourier 

transform. A rectangular pulse shape is used by Cyclic Prefix (OFDMCP-OFDM) for example, 

𝑝[𝑛] is given by: 

                                     𝑝[𝑛] = {N

$
%&'(	    if 0≤ 𝑛 ≤ 𝑁UV − 1                                    (2.1) 

the total number of subcarriers is where𝑁UV . There isn't a postfiltering process of 

𝑤#P[𝑁] = 𝛿[𝑁] 

The OFDM symbol is given a Cyclic Prefix (CP) in order to reduce Inter Symbol Interference 

(ISI) in a multipath channel, the received OFDM signal is free from ISI if the CP length is 

configured to be longer than the channel's delay spread. The process of connecting the final 

samples of an OFDM symbol, 𝑁TW, to the symbol's front is referred to as "CP". 
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Figure 2.8: Add Periodic Prefix. 

In practice, the (FFT) used to construct the CP-OFDM modulator (FFT). The transfer of M 

modulated QAM symbols ({𝑋;}X-.D ) to orthogonal subcarriers is shown in (Figure 2.8) and 

consists of a (P/S) conversion, an IFFT of size 𝑁, and a (S/P) translation. Out of the total 𝑁 

subcarriers in this situation, 𝑀 subcarriers are actively transferring data. To make filtering 

processes easier, the number of active subcarriers is often kept lower than the total number of 

subcarriers, as demonstrated in (Figure 2.9) [77]. this is accomplished by zero padding QAM 

symbols before the IFFT process. 

 
Figure2.9: Effectively use the Fast Fourier transform to create an OFDM waveform. 

Using the modulation and multiplexing method of OFDM, it is possible to split up a single high 

data rate stream into multiple smaller data rate streams and send them across a single narrow 

sub channel. Both current applications and communication require high data speeds, 

transmission specifications, and system necessities. One of the most crucial and successful 

strategies is OFDM, Because OFDM divides the entire bandwidth into narrowband subcarriers 
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that are each smaller than the coherence bandwidth, the channel responses exhibit flat fading. 

Multiple low-speed broadcasts can be sent simultaneously while avoiding Inter-Symbol 

Interference (ISI).  thanks to a network technology called OFDM. Thus, network throughput is 

increased (ISI). The subcarrier frequencies of OFDM are chosen to be orthogonal to, which 

greatly simplifies the transmitter and receiver designs. Due to the orthogonality, the spectral 

efficiency is good, and the total symbol rate is nearly equal to the Nyquist rate for the same 

baseband signal. The frequency range can be used almost entirely. Frequency synchronization 

and interference cancellation are the two methods used most frequently to reduce ICI in typical 

OFDM systems. The fact that they are typically very sophisticated makes them susceptible to 

bandwidth efficiency problems. By combining the (IFFT) at the transmitter and the (FFT) at 

the receiver to transform the wideband signal subject into N narrowband flat fading signals 

using frequency selective fading, the OFDM system reduces equalization complexity [78]. To 

do this, modest data rates are combined to produce high data rates with a lengthy symbol period. 

2.4   CHANNEL MODEL 

In order to satisfy the requirements of the fifth generation of communications, the Cluster Delay 

Line (CDL) channel concept is composed of numerous unique groups of delayed beams, each 

of which consists of a num. of multiple route components. the estimated delays, arrival angles, 

and angles are all the same despite the different departures. The change in beam angle could be 

due to the mobile's different base station. The terminal and displacement angles for each beam 

are represented by a Laplacian, in addition to the sending and receiving antenna's specifications, 

the CDL model considers all elements that have an impact on the signal traveling via the 

communication channel. (In this instance, massive MIMO technology), The received signal in 

the actual world typically includes a direct path in addition to the multi-path signal. routes, 

which vary in quantity and rely on how the electromagnetic wave interacts with nearby 

obstructions. These waves get there with various delays, and the signal obtained at the receiver 

(the receiving antenna) corresponds to the total of these waves. In specific situations, such those 

that occur indoors, it's feasible that the Line-of-Sight (LOS) isn't always present. Since the 

signal's amplitude and phase are changing, Non Line of Sight (NLOS) channels are used to 

facilitate communication in this scenario. The fundamental propagation phenomena witnessed 
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and the concept of multipath propagation are both shown in (Figure 2.10). The NLOS 

propagation scenarios are classified into 3 categories, namely CDL-A , CDL-B and CDL-C, 

We have shown that the three models differ in terms of usage scenario, [79] comprises all the 

content, including formulas and tables, for a frequency range between 0.5 and 100 GHz and 

channel bandwidth up to 2 GHz. The channel model is a crucial component of wireless 

communication system design and testing. IEEE 802.16m's channel model is anticipated to 

have a wide bandwidth, a high data rate, many antennas, and other elements because it aspires 

to satisfy IMT-Advanced criteria. Because different test settings have varied channel properties, 

test environments are an important consideration in channel modeling. Several test scenarios, 

including urban macro cell, suburban big cell, urban micro cell, indoor small office, and outdoor 

to indoor environments, have been designed to replicate and evaluate IEEE 802.16m systems, 

another significant possibility hasn't yet been found or predicted, though. The mobile cellular 

system will become "hotspot" cells, or cells with a high traffic density, when the traffic load 

develops unevenly more than the intended load. Hotspot test environments focus on 

deployment conditions in urban centers with highly rated tall buildings and wider pedestrian 

streets, as well as taking into account rating factors such as a large number of users. Antenna 

geometry and propagation parameters can be separated using geometry-based radio channel 

modeling. Spatial Extension of Delay Line (TDL) Models Details of the power, delay, and 

Doppler spectrum of taps are usually included in TDL models. Power, delay, and angle 

information is determined by CDL models. Since it is determined by energy and angle 

information along with matrix configurations, Doppler is not formally defined. Each group in 

the CDL model consists of 20 beams of identical energy with predetermined offset angles. 

When there is a dominant ray in a block, then the block has 20 + 1 ray. This dominant ray has 

a displacement of zero degrees. A random coupling occurs between the arrival and departure 

rays., are the relevant CDL tables. CDL models offer clearly defined radio channels with preset 

characteristics in order to get simulation results that are comparable with relatively simple 

channel models for calibration purposes. The CDL parameters for LOS and NLOS 

circumstances are listed in table (2.1). In the LOS model, the first and second clusters' 

respective Ricean K factors are 15.3 dB and 10.4 dB [80]. 
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Table 2.1: LOS Clustered Delay Line Model, Indoor Hotspot. 

cluster  delay[NS] 

 

power [dB] AoD [º] AoA [º] 

Ray Power 

[dB] 
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 =
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º  
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lu
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SA

 =
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º  
 

1 0  0 0 0 -0.1* - 28.4** 

2 5  - 3.4 64 - 73 - 3.7 * - 27.1** 

3 10  -9.2 115 80 - 22.2 

4 20  -18.9 7 13 -31.9 

5 30  -17.1 11 16 -30.1 

6 40  -16.3 -7 -34 -29.3 

7 50  -13.7 -60 -12 -26.7 

8 60  -16.3 -43 -17 -29.3 

9 70  -16.8 11 -59 -29.8 

10 80  -17.9 8 -78 -30.9 

11 90  -15.9 14 -65 -28.9 

12 100  -17.4 -1 -56 -30.4 

13 110  -25.8 -11 -57 -38.8 

14 120  -31.0 -129 -22 - 44.0 

15 130  -33.4 -123 -12 - 46.4 

 

2.5  CHANNEL ESTIMATION 

The LMMSE, which has good estimation performance for all SNR values, is used in this study 

to estimate the channel. It is frequently used in the theoretical analysis and practical 
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implementation of MIMO systems [81]. Additionally, It offers an estimation error that is 

straightforward to comprehend and useful for examining system performance limits because it 

is statistically orthogonal to the estimation. However, for the LMMSE channel estimator to 

perform at its best, a thorough understanding of the channel correlation matrix is necessary. 

This information is typically considered to be available in the receiver in the literature, despite 

the fact that the effort needed in calculating the channel and the channel correlation matrix are 

separate activities. The correct estimate of correlation matrices is very crucial for many 

applications. This statistical problem is based on a sample of data and involves a stochastic 

process. However, in order to achieve a reliable computation of the channel correlation matrix, 

we must monitor a large sample set over a long period of time, encapsulate the channel's second 

order invariant characteristics.  In many instances, the channels' time actually slowly changes. 

In addition, the time allocated for transmitting training data is sometimes only partially 

constant, to be compact in order to preserve the system's overall efficacy. Additionally, the 

channel is not fixed in some diffusion circumstances, such as vehicle transportation, and then 

Over time, the channel correlation matrix could alter [82].as a result, it is likely that the 

LMMSE channel estimator will be utilized in practice with an erroneous estimate of the channel 

correlation matrix. The indicative distribution was chosen to trace the temporal and frequency 

fluctuations of the channel more accurately. A block-type empirical arrangement (for quasi-

static channels), a comb-type pilot configuration, or a hexagonal empirical arrangement are all 

frequently considered in the literature (for frequency- and time-selective channels). LMMSE 

channel estimation can be done independently along the frequency and time axes for both mass 

and comb-type layouts. With a pilot preamble, the LMMSE estimation is carried out along the 

frequency axis. a matrix, and therefore requires the optimization of its coefficients, is produced 

by minimizing the cost function. The channel's anticipated frequency response    is written. 

as                                          (2.4) 

Where   and    is the covariance matrix for the  frequency 

axis along the channel. is the matrix of the 𝑀𝑥𝑀 identity and (. )Y .  
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the Hermitian transpose If the pilot vector according to [83]. the typical formulation of the 

LMMSE estimation is provided by (2.5) and is invertible. 

                              (2.5) 

With  𝐻1IU  is the vector that LS calculated to include the samples of the channel frequency 

response. Frequently, the noise variance is defined as     is anticipated to be 

known or precise calculated. The average pilots power is a highly common complexity 

reduction method for LMMSE that was first presented by Edfors et al.  instead 

of   , This is employed in the majority of articles addressing LMMSE estimation. that 

the prior approximation has very little impact on the LMMSE estimator's performance. 

  

Figure 2.10: An example of the (2x1) dimensions LMMSE filter. 

2.6  NEURAL RECEIVER 

Recent developments in deep learning methods have given rise to fresh uses of neural networks 

in a number of industries, including wireless communications [83]. It is undeniable that the 

processing employed at the physical domain layer forms the cornerstone of overall performance 

at the network level. Therefore, there are a lot of unrealized gains in physical layer processing 

that can be made through the usage of DL, and we can take advantage of these advantages to 

improve the radio performance of specific network devices. Particularly, some specialized 
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reception challenges, such channel and equalization estimates, can both be taken into 

consideration by approaching the construction of radio receivers as a supervised learning issue. 

Instead of individually optimizing each component, it will be more efficient to train a deep 

neural network to recognize the received bits of the received waveform. Its objective is to 

extract data bits from a waveform that has been altered to meet 5G orthogonal frequency 

division multiplexing (OFDM) requirements, with this method, the receiver's work can be 

classified as a supervised learning problem without the aid of either existing algorithms or 

human classification. Shental and Hyoids developed a deep neural network method to compute 

effective bit-Log-Likelihood Ratios (LLRs) for equal symbols, which are effectively the basis 

for the initial bits that are supplied, as described in Effie [84]. It demonstrates how, although 

using much less processing power, a deep learning-based mapping technique may attain 

accuracy levels comparable to maximum log optimization for suffix. As long as the proper 

training is put in place, improving the traditional receiver's processing flow with deep learning 

components is preferable to the baseline performance of the traditional receiver. There, a fully 

linked neural network analyzes both the data stream and the pilots to carry out the detection. It 

is shown that a fully learned receiver outperforms a typical receiver in terms of Minimal Mean 

Square Error (MMSE) when there aren't many pilots to estimate channels or when the periodic 

prefix isn't there. which, at low to medium optical signal speeds, performs superbly. At high 

SNRs, the linear least squares-based receiver continues to perform better than the CNN-based 

system. But with the pixel-assisted MMSE-based receiver, the optimal channel knowledge does 

not happen as quickly. The most extreme example of prior attempts has been successfully built 

for comprehensive deep learning systems, where both the transmitter's and the receiver's wave 

structure or modulation scheme are simultaneously learned from the input. Furthermore, it 

performed better than more advanced futuristic algorithms. These findings demonstrate that a 

deep neural network-driven data-driven receiver can be built to enhance the functionality of 

future radio systems. However, it appears to be able to dramatically enhance performance by 

carefully modifying the neural network architecture and its inputs. In light of the findings, the 

neural network's ability to employ and distribute unknown data symbols in channel 

optimization Estimation accuracy is what produces the majority of the improvements. Unlike 

many other efforts, this one additionally considers compliance with standards, especially with 
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5G New Radio (NR). Acquired receivers must, among other things, Support Modulation 

Extraction References (SMRS) or experimental configurations described in the NR 

specification in order to be 5G compatible. A low-density symmetry-checking (LDPC) decoder 

must also decode the receiver's output. This calls for the neural network to have the ability to 

calculate the uncertainty for each received bit for each modulation order. Future solutions based 

on deep learning that are adaptable and can manage a variety of bookmark configurations and 

modification plans in a single implementation while adhering to other processing steps are thus 

required. Here, we shift our attention to the Rx-NN network architecture's architectural 

principles. The final bit-level LLRs are produced by Rx-NN using the Fourier converted 

frequency-domain data acquired during a e Transmission Time Interval (TTI). The network can 

use all the data in the TTI to estimate each bit if the entire TTI is inputted at once. Due to the 

non-static environment and perhaps mobile UEs, each subcarrier and OFDM symbol's 

frequency-domain channel coefficients are also distinct. Given that the physical channels in 

these circumstances exhibit significant local correlations in both frequency and time, a fully 

convolutional neural network is one in which 2D convolutions function in both these 

dimensions. These 2D CNN filters are designed to pick up on these local correlations, which 

are independent of frequency and time, and to make efficient use of them throughout the TTI. 

Another reason for the architecture is that since the sparse pilot symbols only provide local 

channel information, by allowing the network use the unknown data and its known distribution, 

we may be able to use it to more accurately forecast LLRs far from the real pilot positions. 

Consequently, in contrast to other previous methods, instead of creating separate conduits or 

blocks for pilot-based channel estimation and data symbol equalization, we provide CNN 

unfettered access to all data. Because this enables the network to use all of the data to fulfill the 

assigned task, we hypothesize that the channel and LLR estimation can be improved if the entire 

TTI (both the unknown received data and the known pilots) is delivered to the network in a 

coherent manner. The following explanation applies to a MIMO scenario, however, it is also 

possible to use this design concept in a MIMO operation where multiple signal streams are 

spatially multiplexed. Our first aim is to fully utilize the Rx-NN architecture's MIMO 

processing capabilities. Incoming data and pilot information are combined to create a three-

dimensional input array as seen in figure below (Figure 2.11), and the basis for Rx-functioning 



43  

is this knowledge. The received signal following the FFT is the first component of the input for 

NN's, denoted by 𝑌 ∈ 𝐶U	Z	%	Z	7* 𝑆, which includes both data and pilot symbols received, is the 

quantity of symbols in time, followed by 𝐹, the num. of subcarriers, and 𝑁𝑟, the num. of 𝑅𝑋 

antennas.And The second part is  𝑋[ ∈ 	𝐶UZ%   The non-pilot points in the received signal Y 

are matched by the pilot reference symbols in both frequency and time, with the non-pilot 

locations filled with zeros.  

Figure 2.11: The raw channel estimations, the known pilot symbols, and the received unknown data 

are concatenated as the input to the Rx-NN. 

Additionally, we compute the raw the third dimension, the components of Xp are repeated. 

channel estimates beforehand. �̧�8 = 𝑌	⨀𝑋[∗   for the positions of pilots, where ⨀ 	and (. )∗  offer 

this as the third input. are, respectively, the complex conjugate and the element wise product. 

If there are many, when conducting the raw channel estimates 𝑅𝑋 antennas, the third dimension, 

the components of 𝑋𝑝 are repeated. Since the initial two dimensions of 𝑌, 𝑋𝑝 and �̧�8º  if they are 

equivalent, they can be stacked with the third dimension (channel) to create  𝑍 ∈ 𝐶U	Z	%	Z	7( 	 

where 𝑁V = 2𝑁8 + 1 Furthermore, The final input array is created by stacking the real and 

imaginary portions of the input as separate channels and converting the complex-valued input 

to real-valued 𝑍	 ∈ 	𝑅\	Z	%	Z	7+ The convolutions can function on related data by stacking the 

pertinent information into channels in this way. Although another alternative is to use a 

complex-valued network with a complex-valued input, we haven't seen any performance 

benefits from doing so. To a normalized CNN array with residual connections for the neural 
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network 𝑓:	𝑍	𝐿, where 𝐿 is the matrix holding the outputs of LLRs, we apply a ResNet pre-

reactivation neural network. Time and frequency are the first two dimensions that are used in 

2D convolutions. Because the structure is entirely convolutional, the output size (𝑆	𝐹), Even 

for each TTI when employing the same trained neural network, the input size can change 

immediately. It is necessary in particular to compute the LLR estimations for each symbol in 

the input. The network does not use maximum pooling or scaling, which are typically used in 

CNNs to degrade resolution, as a result, maintaining constant resolution (S F). Remember that 

the input size can be raised from the training set but shouldn't be decreased from the full field 

because convolutions with zero padding may have unexpected effects on the output. As opposed 

to changing the resolution, we add more filters to the network's intermediate layer and use 

extended convolutions to boost for instance, semantic segmentation frequently involves the 

receptive domain [85]. Stretching, as opposed to scrolling, enables the network to collect longer 

relationships in time and repetition while preserving complete information about each input 

token. Expansions turned out to be especially crucial for shallow buildings. Additionally, we 

noticed better outcomes when deeply detachable gyres [86]. were used in place of conventional 

gyri. The depth 2 multiplier for profoundly detachable gyri is used to obtain the major results 

in this study, which effectively means that the depth convolution's output channel count is 

doubled to increase the amount of parameters and improve the network's modeling capabilities. 

Finally, a straightforward binary classification problem is used to describe the prediction of 

bits. The bit LLRs 𝐿 ∈ 	𝑅UZ%Z&, where 𝐵 is the quantity of bits in the constellation being utilized 

, make up the Rx-NN's final result (e.g., 4 for 16 QAM). For the purpose of calculating the loss 

between each ground truth bit and the network output 𝐿, we use the binary sigmoid Cross-

Entropy (CE) method.  

𝐶𝐵(∅) ≜ − .
#^&

∑ ∑ (𝑏;,'G&?.
G-N(;,')∈^ log¿𝑏À;'GÁ + ¿1 − 𝑏;,'GÁlog	(1 − 𝑏À;'G)          (2.6) 

where #𝐷 is the quantity of data-carrying resource elements. and 𝑏;,'G 	is a prediction of the 

likelihood that the bit 𝑏;,'G is one,  

𝑏;,'G = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑	(𝐿;_G) = .
.H	`,I-.#

                                     (2.7) 
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The architecture of Rx-NN CNN ResNet as mentioned in (Table 2.2). 

Table 2.2:  The Rx-NN CNN ResNet Architecture. 

Layers Types Filter (S, F) dilation (S, 

F) 

Out-put 

shape 

In-put 1	𝑌	 ∈ 	𝐶 𝑅𝑋	𝐷𝑎𝑡𝑎 none none (𝑆, 𝐹, 𝑁𝑟) 

𝐼𝑛𝑝𝑢𝑡	2	𝑋𝑝	 ∈ 	𝐶 𝑇𝑋	𝑃𝑖𝑙𝑜𝑡 none none (𝑆, 𝐹, 1) 

𝐼𝑛𝑝𝑢𝑡	3	𝐻𝑟	 ∈ Raw channel estimate none none 𝐶	(𝑆, 𝐹, 𝑁𝑟) 

𝐼𝑛𝑝𝑢𝑡	𝑍𝑐	 ∈ 	𝐶 Concatenate inputs 1-3 ∈ C none none (𝑆, 𝐹, 𝑁𝑐) 

𝑅𝑒𝑎𝑙	𝑖𝑛𝑝𝑢𝑡	𝑍	 ∈ 	𝑅 Concatenate ∈ R none none (𝑆, 𝐹, 2𝑁𝑐) 

Conv In 2D convolution (3,3) (1,1) (𝑆, 𝐹, 64) 

ResNet Block  1 Depth wise Separable Conv. (3,3) (1,1) (𝑆, 𝐹, 64) 

ResNet Block  2 Depth wise Separable Conv. (3,3) (1,1) (𝑆, 𝐹, 64) 

ResNet Block  3 Depth wise Separable Conv. (3,3) (1,1) (𝑆, 𝐹, 128	) 

ResNet Block  4 Depth wise Separable Conv. (3,3) (1,1) (𝑆, 𝐹, 128	) 

ResNet Block  5 Depth wise Separable Conv. (3,3) (1,1) (S, F, 256) 

ResNet Block  6 Depth wise Separable Conv. (3,3) (1,1) (𝑆, 𝐹, 256) 

ResNet Block  7 Depth wise Separable Conv. (3,3) (1,1) (𝑆, 𝐹, 256) 

ResNet Block  8 Depth wise Separable Conv. (3,3) (1,1) (𝑆, 𝐹, 128) 

ResNet Block  9 Depth wise Separable Conv. (3,3) (1,1) (𝑆, 𝐹, 128) 

ResNet Block  10 Depth wise Separable Conv. (3,3) (1,1) (𝑆, 𝐹, 64) 
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Table 2.2:  The Rx-NN CNN ResNet Architecture. "Tables continued"  

Layers Types Filter (S, F) dilation (S, F) Out-put 

shape 

ResNet Block  11 Depth wise Separable Conv. (3,3) (1,1) (𝑆, 𝐹, 64) 

Conv Out-put 2D  Convolution none none (𝑆, 𝐹, 𝐵) 

LLR Output L Out-put none none (𝑆, 𝐹, 𝐵) 

 

 
  



47  

3. RESULTS & DISCUSSION 

3.1  SIMULATION SETUP AND PARAMETERS 

We simulate the proposed system in order to train the Neural receiver that detect OFDM, where 

channel estimation and valence and neural receiver mapping are replaced. creates the received 

resource network by computing (LLRs) on the sent encoded bits using samples obtained after 

discrete Fourier transformation (DFT). The LLRs are then provided to an external decoder to 

reproduce the transmitted data bits used in the simulations. Then we set up an accurate 

simulation of a mobile User Terminal (UT) and a point-to-point (BS) MIMO link of the base 

station. Up and down trends are taken into consideration. One of the Python programming 

language libraries Sionna, an open-source library built on Tensor Flow for physical layer 

modeling of wireless and optical communication networks, is used to carry out the simulation. 

Connecting the appropriate building blocks, which are offered as Keras layers, allows for rapid 

prototyping of complicated communication system structures. Gradients can be distributed 

throughout an entire system by employing differentiable layers, which is a crucial tool for 

machine learning, particularly neural network integration, and system optimization. It allows 

for the simulation of MU-MIMO, links using (LDPC), Polar en/decoders, 3GPP channel 

models, and OFDM codecs that are compatible with 5G. (OFDM). It also provides channel 

estimates, equalization, and soft map removal. The system parameters used in the simulations 

are shown in Table 3.1. 
Table 3.1: System Specific Simulation Parameters. 

Description Value Description Value 

Number of UT   1 Carrier frequency  2.6e9 

Num. of BS 1 Delay spread   300e-9 

Num. of UT antenna 4 Cdl model A-B-C-D-E 

Num. of BS antenna 8 Speed 10 

Num. of OFDM symbols 14 FFT size   128 

Subcarrier spacing 15e3 Number bits per symbol 2 

Cyclic prefix length 6 Number convolutional channels 128 
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3.2 STREAM MANAGEMENT 

Any type of MIMO simulation can benefit from setting a stream management object. We will 

build up one UT and one BS with a choice of antennas in each based on the transmitters and 

receivers that exchange data streams with one another. Depending on the direction, which could 

be uplink or downstream, UT or BS are considered as either transmitters or receivers. Precoding 

and Equalization are just two of the many features that Stream Management has and that other 

parts use. Here, we will set up the system so that the num. of transmitter streams (uplink and 

downlink) equals the num. of UT antennas. 

3.3   OFDM RESOURCE GRID & PILOT PATTERN 

A grid of OFDM resources that spans many OFDM symbols is created. Data symbols and pilots 

make up the resource grid, which in 4G/5G parlance is comparable to a slot. Even though they 

are not crucial to our situation, A few guard carriers are also present to the left and right of the 

spectrum, we null the DC subcarrier. A cyclic prefix is also utilized. a Pilot Pattern is created 

automatically when the Resource Grid is created. An approach would have been to first create 

a Pilot Pattern and then supply it as a startup parameter, and this result of OFDM resource grid 

as shown as in figure below (Figure 3.1). 

 
Figure 3.1: OFDM resource grid. 
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The resource grid, which can be seen in the image above, has 76 subcarriers spread across 14 

OFDM symbols. To the left and right of the spectrum, every guard carrier, including a DC 

guard carrier, are nulled. Pilot transmissions employ the third and twelfth OFDM signals. Let's 

take a look at the transmitter's pilot pattern, and this result of pilot pattern as shown as in figure 

below (Figure 3.2). 

 
Figure 3.2 Pilot Pattern. 

Pilot programs are made available to DC carriers and functional subcarriers from whom the 

shield has been removed across the whole resource network. This yields 64 functional 

subcarriers in our example, 66-2 (left guard) and 76-1 (DC) (right guard). The resource network 

only knows which resource items are reserved for pilots; the pilot pattern determines what is 

actually transmitted to them. In our case, the Kronnecker Pilot Pattern and four dispatch streams 

are configured. There is a pilot on every fourth subcarrier in orthogonal pilot sequences, which 

are normalized so that the average power of each pilot symbol is equal to one. The amplitude 

is adjusted by a factor of two because the sequence only uses a beta sign for per fourth iteration, 

and this result of pilot sequences as shown as in figure below (Figure 3.3). 
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Figure 3.3: Pilots Sequences. 

3.4  ANTENNA ARRAYS 

In the process of configuring antenna arrays used by developers UT and BS. The geometry of 

antenna arrays and antenna radiation patterns are taken into account. For the 3GPP 38.901 

specification's CDL, UMi, UMa, and RMa models, this is necessary. In this section, we'll 

assume that the UT and BS antenna arrays are made up of dipole antenna components that 

adhere to the 3GPP 38.901 antenna configuration. By default, the vertical and horizontal 

spacing between antenna elements is half a wavelength. If necessary, you can create your own 

antenna configurations and radiation patterns. The y-z level is where the Antenna  Array is 

always specified. The direction of UT or BS will decide its final direction, and this result of the 

antenna array to BS and UT as shown as in figure below (Figure 3.4).  

 
Figure 3.4: the Antenna Array to BS& UT. 
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3.5  CDL CHANNEL MODEL 

As soon as the CDL Channel Model is generated, an example of the CDL Channel Model with 

complicated gains a and tau delays for each path, continuous time channel pulse replies can be 

produced using CDL in batches that are randomly realized. The channel pulse responses are 

gathered at the sampling frequency for the required amount of time samples in order to produce 

time-varying channels. Channel simulation in the frequency domain, we need a number of 

symbol samples from DM symbols taken once for each OFDM symbol duration, which is equal 

to the OFDM symbol length plus the periodic prefix. It is projected that during the time-window 

of interest, the delays won't alter, only the advantages of challenging paths change over time. 

The next two figures, respectively, depict the channel impulse response at a certain time instant 

and the gain of one path as it varies over time, and this result of the channel impulse response 

as shown as in figure below (Figure 3.5).  

 
Figure 3.5: the channel impulse response. 

3.6  RX-NN RECEIVER 

It creates the Keras layer, which controls the neural receptor. the neural receives the 2D resource 

network as an input and must effectively handle it, the remaining convolutional layers are 

elevated, before the next stage of defining the Keras layers that implement the neural receives 

takes place. Avoiding gradient fading is accomplished using residual joins (skipping). For ease 

of use, a residual block's implementing Keras layer is initially defined. This Keras layer 

produces a convolutional residual block by stacking these blocks, there are two convolutional 

layers paired with (ReLU) activation, layer normalization, and a skip connection. In order for 
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the skip connection to work, the constant "NUM. CONV CHANNEL" implies that the input's 

convolutional channels' number and the convolutional layers' number must be equal. The 

residual convolutional neural receiver is added to the Keras layer. using the post-DFT received 

samples as input, Using the transmitted coded bits as input, this neural receiver computes LLRs 

to create a resource grid of dimension numb. of symbols 𝑥	𝑓𝑓𝑡 size. The information bits can 

then be reconstructed using these LLRs as input to a decoder. The guard bands and pilots are 

included in the resource grid given to the neural receiver, which also computes LLRs for these 

resource elements. To just keep the essentials, they must be discarded. 

3.7   END TO END SYSTEM AS A KERAS MODEL 

The three systems under consideration—the perfect CSI baseline, the LS estimation baseline, 

and the neural receiver—share the majority of the associated components, hence an end-to-end 

Keras model is adopted (transmitter, channel model, external code, etc.). The system to be setup 

is specified by the 'System' parameter of a Keras model, and the 'Train' parameter determines 

whether the system has been instantiated for training or assessment. Only when the channel 

realizations are randomly chosen, applied to the channel input, and the neural component in 

each call of this model is a set of randomly chosen code-words that are shaped and assigned to 

resource networks to construct the channel input, is the "training" parameter meaningful, and 

the receiver is used to compute the LLRs on the encoded bits on the post-DFT samples that 

were received. If training is not done, an external decoder is utilized to reassemble the 

information bits. The specified "system" parameter defines which receiver is used (baseline 

with complete knowledge of CSI, baseline estimate LS, or neural receiver). To estimate the 

batch BMD, transmitted bits and LLRs are employed, if trained. 

3.8   EVALUATION OF THE BASELINES 

The proposed Rx-NN-based receiver is compared with two conventional LMMSE receivers, 

the first of which is referred to as a practical LMMSE receiver since it completes channel 

estimation using data codes and subcarriers, and the BER rates reached by baselines are 

examined, and the second that receives channel information Complete as prior knowledge. The 

first estimates the upper limit of performance that can be achieved using the LMMSE equation. 
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For both conventional receivers, including one with perfect channel knowledge, we use the 

approximate rule and the main reasons for this is the fact that the LMMSE receiver with perfect 

channel information uses OFDM receiver process processing, which means that it sometimes 

cannot achieve perfect balance and interference caused by Doppler between carriers and 

changes in the primary channel within each element of the resource, the primary performance 

criterion for this model is Bit Error Rates (BER). Specifically, we take into account the encoded 

BER produced by running the LLRs through a modified decoder before a 5G compliant LDPC 

decoder and contrast the encoded bits with the original bit sequences. If the LLRs offered by 

the Rx-NN for LDPC decoding appropriately capture the uncertainty in the observed bits, they 

can be identified by the encoded BER analysis. The validity of the LLRs themselves can also 

be inferred from the encoded BER, since there is no ground truth, direct examination of LLRs 

is challenging (Under the used channel models, an explicit formula for ideal LLRs does not 

exist). Using the correlation simulation data, the model was trained. The main learning rate is 

first adjusted to the random initialization 102, and we also apply a little weight decay with a 

scale factor of 104 to avoid increasing the amounts of weight over a long training period. The 

optimization is performed using the LAMB optimizer [87]. When using four 2080Ti GPUs in 

parallel, LAMB allows the training size to be scaled up to larger batch sizes (eg 80 TTIs, 312 

x 14 x 8 bits each, or 28 million bits per batch resolution), but not to smaller batch sizes (eg),) 

while Adam [88] may also run in batches of 20 TTIs or less. The linear learning rate warm-up 

time from zero to the main learning rate, which lasts 800 iterations, should also be used for 

large batch sizes. In addition, after 30% of the total iterations, the learning rate drops linearly 

to zero. In general, we typically run 10,000 iterations with a batch size of 80 TTI, and longer 

runs did not yield significantly better results.  

When evaluating the (BER) rates achieved by the system baselines, we note in (Table 3.2) that 

the received (BER) as equal = 0 at  Eb/No = 4.5 when using LS channel estimation with neare

st-neighbor LMMSE equalization as a baseline at the receiving end in the process. 
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Table 3.2: Simulation Output Baseline LS Channel Estimation 

Eb/No 

[dB] 

BER BLER Bit 

errors 

Num. bits Block 

errors 

Num. 

blocks 

Run 

time[s] 

-5.0 2.5356e-01 1.0000e+00 45178  178176 128 128 5.6 

-4.5 2.3475e-01 1.0000e+00 41826 178176 128 128 0.4  

-4.0 2.1828e-01 1.0000e+00 38893 178176 128 128 0.4 

-3.5 1.9420e-01 1.0000e+00 34601 178176 128 128 0.4 

-3.0 1.6453e-01 1.0000e+00 29315 178176 128 128 0.4 

-2.5 1.0301e-01 9.8438e-01 18354 178176 126 128 0.4 

-2.0 2.1271e-02 5.3516e-01 7580 356352 137 256 0.8 

-1.5  9.2792e-04 2.9225e-02 4464 4810752 101 3456 9.6 

-1.0 1.2527e-04 2.1875e-03 2232 17817600 28 12800 34.9 

-0.5 4.4675e-05 3.9063e-04 796 17817600 5 12800 36.4 

0.0 4.3833e-05 4.6875e-04 781 17817600 6 12800 35.1 

0.5 1.0495e-05 7.8125e-05 187 17817600 1 12800 34.9 

1 0.0000e+00 0.0000e+00 0 17817600 0 12800 34.6 

 

The evaluation of the system, but in (Table 3.3), the error rate in the received bits equal = 0, t

hat is, there is no error rate in the received bits at the value Eb/No = 1 when using perfect CSI 

as a baseline in the evaluation process of the system, but when using the neural receiver as a b

ase line in the process of evaluating the system. 
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Table 3.3: Simulation Output Baseline Perfect CSI. 

Eb/No 
[dB] 

BER BLER Bit 
errors 

Num. bits Block 
errors 

Num. 
blocks 

Run 
time[s] 

-5.0 3.8958e-01 1.0000e+00 69414 178176 128 128 5.5 

-4.5 3.8202e-01 1.0000e+00 68066 178176 128 128 0.4 

-4.0 3.6833e-01 1.0000e+00 68066 178176 128 128 0.4 

-3.5 3.5541e-01 1.0000e+00 63326 178176 128 128 0.4 

-3.0 3.4102e-01 1.0000e+00 60761 178176 128 128 0.4 

-2.5 3.2717e-01 1.0000e+00 58293 178176 128 128 0.4 

-2.0 3.1188e-01 1.0000e+00 55569 178176 128 256 0.4 

-1.5 2.9299e-01 1.0000e+00 52204 178176 128 3456 0.4 

-1.0 2.7783e-01 1.0000e+00 49503 178176 128 12800 0.4 

-0.5 2.5763e-01 1.0000e+00 45904 178176 128 12800 0.4 

0.0 2.3102e-01 1.0000e+00 41162 178176 128 12800 0.4 

0.5 1.0495e-05 1.0000e+00 36168 178176 128 12800 3.0 

1 0.0000e+00 1.0000e+00 30140 178176 128 12800 0.4 

1.5 9.0624e-02 9.3750e-01 16147 178176 120 12800 3.0 

2.0 1.2953e-02 2.4609e-01 9232 712704 126 512 1.4 

2.5 8.2717e-04 1.2401e-02 9285 11225088 100 8064 23.1 

3.0 2.5132e-04 2.1094e-03 4478  17817600 27 12800 34.7 

3.5 1.1983e-04 9.3750e-04 2135 17817600 12 12800 34.2 

4.0 1.0563e-04 6.2500e-04 1882 17817600 8 12800 34.4 

4.5 0.0000e+00 0.0000e+00 0 17817600 0 12800 34.2 
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We note, as in (Table 3.4), that the error rate in the received bits equal = 0 at Eb/No = 1, which 

is identical to the values when using perfect CSI as a baseline in the evaluation process of the s

ystem and when compared with using LS channel estimation with nearest -neighbor LMMSE 

equalization as a baseline at the receiving end. 

Table 3.4: Simulation Output Baseline Neural Receiver. 

Eb/No 

[dB] 
BER BLER Bit 

errors 
Num. bits Block 

errors 
Num. 

blocks 
Run 

time[s] 

-5.0 2.6772e-01 1.0000e+00  47702 178176 128 128 0.3 

-4.5 2.5147e-01 1.0000e+00  44806 178176 128 128 0.3 

-4.0 2.3377e-01 1.0000e+00  41653 178176 128 128 0.3 

-3.5 2.1260e-01 1.0000e+00  37881 178176 128 128 0.3 

-3.0 1.8983e-01 1.0000e+00  33824 178176 128 128 0.3 

-2.5 1.5238e-01 1.0000e+00  27151 178176 812  128 0.3 

-2.0 1.8023e-02 5.3516e-01 14338 178176 122 128 0.3 

-1.5 1.8023e-02 3.2292e-01 9634 534528 124 384 1.0 

-1.0 2.7484e-03 4.5312e-02 4897 1781760 58 12800 3.2 

-0.5 9.7432e-04 9.3750e-03 1736 1781760 12 12800 3.2 

0.0 4.2654e-04 5.4687e-03 760 1781760 7 12800 3.2 

0.5 2.5424e-04 2.3437e-03 453 1781760 3 12800 3.7 

1 0.0000e+00 0.0000e+00 0 1781760 0 12800 3.2 
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We notice that the neural network device is significantly superior, according to the figure below 

(Figure 3.6). 

 
Figure 3.6: The output result of perfect CSI, LS estimation, and Neural receiver. 

The graph above demonstrates how much higher the theoretical ratings of the Rx-NN receiver 

are than those of the LMMSE receiver for the LS channel. Even if just one example code is 

provided at a time, the CNN-based Rx-NN can almost match the performance of the LMMSE 

receiver (perfect channel). Since the practical LMMSE receiver requires two pilots to operate 

continuously in these circumstances, it performs very poorly with just one pilot. Even though 

the LMMSE has access to two pilots because of the wide Doppler shift range contained in the 

data at higher SINRs, the Rx-NN only requires one pilot to perform better than the LMMSE. 

Another aspect of this incredibly high performance is the encoded BER rates (Table No.3.2), 

which show that the LLRs generated by Rx-NN are good enough for an LDPC decoder. The 

LLRs' encoded BER rates are the same as the LMMSE receivers with full channel information, 

it is another element that makes their remarkable (adequate quality, optimal channel) quality. 

The encoded BER rates (Table No.3.3) demonstrate that the LLRs computed by Rx-NN are of 

appropriate quality for an LDPC decoder, which is another factor in this performance (perfect 

channel), since the encoded BER matches the quality of the LMMSE receiver with full channel 

knowledge. Exceptionally. The benefit of using a genuine LMMSE receiver is that even a 

practical LMMSE receiver cannot access the waterfall portion of the code, and when the 
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number of experimental tokens is reduced from two to one, Rx-NN performance is only 

marginally impacted. While all reference LMMSE receivers perform poorly due to the absence 

of interference mitigation features. When the encoded bit error rate (BER) is taken into account 

this is probably due to the fact that when calculating LLRs, the standard assignment factor 

assumes a white noise with a Gaussian distribution, while the somewhat high interference signal 

invalidates this assumption. While Rx-NN performs better than Reference receptors under 

intercellular interference The Rx-NN avoids making these assumptions since it implicitly learns 

the proper future behavior of noise based on the training data it receives, and interference 

distributions. 
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4. CONCLUSION 

The advantages of full learning over AWGN channels were used in this study, although they 

were not quantified on wireless microchannel models. This paper attempts to close this gap by 

examining the end-to-end learning gains over the frequency and time-selective fading channel 

utilizing orthogonal frequency division multiplexing (OFDM). The modulation gains reported 

on the AWGN channels disappeared once it was realized that the receiver channel was not 

flawless. However, we also find an additional source of performance improvement. It originates 

from a neural network-based receiver Rx-NN that uses many subcarriers and OFDM codes, 

allowing to reduce orthogonal pilots without sacrificing the Bit Error Rate (BER  ) , As part of 

a supervised training effort, we examined a DL-based digital radio receiver that was created to 

meet the requirements of 5G wireless communication. It was taught using encoded bits and 

frequency domain antenna signals. We anticipated that performance would be enhanced by 

training a simulated chain of digital receivers as a single supervised system. This was the 

primary driving force behind this endeavor. contrasting the training of various minor receiver 

parts one at a time. As a result, the system can be instantaneously optimized for the job of 

retrieving the transmitted bits. Additionally, the neural network's architecture enables the least 

amount of learning for both optimal and predictable receiving systems. By doing so, he can 

learn to tackle a variety of difficult implicit identification issues with radio channels and 

equipment. We have built a completely deep convolutional neural network, known as -Rx-NN, 

that is trained to recognize encoded bits directly from frequency domain antenna signals in 

order to process and investigate the idea. Rx-NN has also been trained to handle a variety of 

5G wireless network modification and piloting scenarios. In contrast to many similar efforts, 

convolutional input channels were created for neural network inputs that combined both known 

experimental codes and unknown data codes. As a result, when calculating the channel, Rx-NN 

was able to combine the data and the experimental code well. The results from 5G uplink and 

downlink data transmission simulation models demonstrate that the Rx-NN neural receiver 

performs better than conventional techniques. In addition, it outperformed a different neural 

network design in which channel estimation and equation were taken into account individually. 

We attribute the success of the Rx-NN neural receiver to efficient channel estimation and 
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equalization using the local symbol distribution and known constellation locations for unknown 

data symbols. In fact, some studies have shown that the intrinsic processing of Rx-NN receptors 

and repetitive receptors is somewhat comparable. It has also been shown that Rx-NN can 

effectively process non-Gaussian noise and interference over time. Since the main focus of this 

article is on the improvements in radio performance resulting from the use of deep learning, 

this work's lack of substantial study of computational complexity is one of its weaknesses. Even 

though we have looked at a number of methods to improve network performance, additional 

research is still required to develop these networks into slices of temporal neural networks. 

Furthermore, it is hardware-specific to compare total complexity with conventional receivers, 

and you should put more emphasis on latency and power usage than radio performance. Even 

if such analysis is outside the purview of this essay, it is an important topic for our subsequent 

study. Using an OFDM channel model that accounts for frequency selectivity and channel 

aging, we assessed neural receptor performance. Our findings demonstrate that a neural 

receptor acting on many sub transmitters and OFDM codes provides significantly lower BER 

rates while employing a small number of orthogonal pilots. Next, we demonstrate how reliable 

code detection is made possible without the need for orthogonal pilots thanks to the combined 

optimization of the neural transceiver. Productivity gains are possible since no renewable 

energy is lost when reference signals are sent. 
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5. FUTURE WORKS 

In the future, this research can be expanded to exploit the gains from the application of deep 

learning techniques in 5G wireless communications. While knowing the receiver's various 

components has yielded some benefits, this can be extended to include the use of deep science 

techniques across all components rather than individual components where convolutional 

neural networks trained from start to finish can be used as a single piece which significantly 

reduces computational complexity Large and participate in the design of wireless 

communication networks in multiple  input- multiple inputs (MIMO) instead of traditional 

methods and reduce the computational complexity of these methods and this can be an input 

for the sixth generation of wireless communication networks 6G. The fact that this research 

only contains a finite computational complexity study of the network that was utilized to create 

the Rx-NN neural receives is one of its limitations. Instead, the improvement in radio 

performance achieved through the use of deep learning is the main emphasis of this work, and 

future work of this study on conditioning may include the use of these networks to infer 

temporal neural network chips and use them to improve network efficiency since it can 

eliminate the need for channel guessing bookmarks and modulation removal and the associated 

overhead, we believe the jointly acquired transceiver is a very exciting component of post 5G 

communication systems. 
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