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Short Abstract— In this study, full-wave space-domain approach 
is presented for analysis of some passive microwave circuits in 
planarly layered media. The Electromagnetic fields are described 
in terms of a mixed potential integral equation (MPIE) 
formulation. This formulation is based on the method of 
moments (MoM) in spatial domain and utilizes closed-Green’s 
functions. We have introduced new microwave filters consists of 
coupled microstrip open-loop resonators and analyzed to 
demonstrate the efficiency and accuracy of MPIE-MoM 
technique.  
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I.  INTRODUCTION 
Passive microwave devices embedded in stratified media 

have been extensively studied in the literature and numerous 
planar structures have been designed using integral equation 
based techniques. Integral equation can be formulated in 
various ways. Among these, mixed potential integral equation 
(MPIE) is one of the most successful methods for the analysis 
of microwave circuits and planar antennas [1-3]. Alternative 
formulations are the electric field integral equation (EFIE) and 
magnetic field integral equation (MFIE). For numerical 
modeling of small-to-medium-sized printed planar geometries 
used in monolithic integrated microwave and millimeter 
structures, the method of moments (MoM) [4] is generally 
accepted to be one of the most efficient and robust methods. 
The MoM formulation in electromagnetic problems starts with 
writing the integral equations (MPIE, EFIE or MFIE). 
Generally, EFIE or MFIE is applied in the spectral-domain, 
while MPIE is applied in the spatial-domain. It should be noted 
that EFIE and MFIE use the Green’s functions of the electric 
and magnetic fields as their kernels, whereas the MPIE uses the 
Green’s functions of the scalar and vector potentials, of which 
singularities are of the order of 1/R, and, therefore, are less 
singular [5]. Hence, the use of MPIE in conjunction with the 
spatial-domain MoM has been preferred for the 
characterization of planar printed geometries in general. More 
recently, this formulation was improved by the introduction of 
suitable closed-form Green’s functions in spectral and spatial 
domains for general media [6]. With the use of closed form 
Green’s functions, calculation of the oscillatory and slow 
converging Sommerfeld integral is no more necessary. In the 
derivations, the main goal is to put these closed-form 
representations in an appropriate form for the solution of 
MPIE-MoM. MPIE is formulated as the governing equation of 

the printed geometries in layered planar media, and the spatial-
domain MoM is used to solve for the unknown current 
densities in the structure.  

In this paper, formulation of MPIE-MoM is concisely 
explained from a theoretical point of view in the next section. 
Then, scattering parameter analysis and simulation algorithm 
are introduced. In numerical examples section, the MPIE-MoM 
formulation is applied to new filter configurations and the 
results are compared from commercial EM software, em 
Sonnet. The final section presents the conclusions. 

II. FORMULATION OF MPIE-MOM 
For the sake of illustration, a typical microstrip structure in 

layered environment is shown in Figure 1. It is assumed that 
conductors are lossless and infinitesimally thin and all layers 
extend to infinity in transverse domain (xy-plane). The 
thickness and permittivity of each layer are denoted as hi and 
εri, respectively. 

 

 

Figure 1.  A general microstrip structure in layered media. 

In the MPIE-MoM formulation, first the electric field is 
written in terms of scalar and vector potentials as 

φ∇−−= AE jw    (1) 
Then, the vector and scalar potentials are expressed in 

terms of convolution integrals involving surface density J and 
charge density ρ on the metallization as 
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By employing the continuity equation (∇.J + jwρ = 0 ), the 
charge density ρ in the scalar potential equation can be written 



in terms of surface current density and from (1), the tangential 
components of electric field on the metallization can obtain as 
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where * denotes convolution and A
yy

A
xx GG = . The explicit 

expression for the Green’s functions of the scalar potential in 
(4) and (5) is: 
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Figure 2 shows the block diagram for the solution of MPIE-
MoM. In the first step, the unknown current distribution on the 
metallization is expanded as a set of known basis functions 
with unknown coefficients or amplitudes as: 
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where Bx
(m,n), By

(m,n) are the known basis functions with 
unknown amplitudes Ix

(m,n), Ix
(m,n), defined at (m,n)-th position 

on the subdivided horizontal conductor. In this study, the basis 
functions used to approximate the current density on the 
metallization are chosen to be rooftop functions, by the use of 
which the unknown current distribution on metallization can be 
modeled very accurately. 

 

Figure 2.  The block diagram for  the solution of MPIE-MoM 

In the second step, current densities in (7) and (8) are 
substituted into the electric field expressions of (4) and (5), and 
boundary conditions are applied. Application of the boundary 
conditions is performed in the integral sense through the well-
known testing procedure of the MoM, where the field 
expressions are multiplied by testing functions ),( nm

xT ′′ , 
),( nm

yT ′′ and integrated on the conductors and set to zero 
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matrix equation for the unknown amplitudes of the basis 
functions has the following form: 
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where [Z] is NxN impedance matrix and the entries Zij 
represent the mutual impedances between the testing and basis 
functions, [V] is the Nx1 excitation matrix and V’s represent 
the excitation voltages due to the current source(s), and finally 
[I] is the Nx1 current coefficient matrix. As an example, a 
typical matrix term involving both the scalar and vector 
Green’s functions are given in the following form: 
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In the above equation, <,> denotes inner product and * 
denotes convolution operator. After forming the matrix entries, 
two major steps are left to find the unknown coefficients of 
basis functions: i) evaluation of these matrix entries, ii) 
solution of the matrix equation for the coefficients of the basis 
functions. Analytical methods introduced by Alatan et. al [7]  
are used for the evaluation of these matrix entries. After the 
evaluation of inner product terms and substituting them into 
(9), the current densities on the conductors are obtained by 
solving the matrix equation. Finally, the circuit parameters 
such as the scattering parameters are extracted from the current 
distribution. 

2.1. Scattering Parameter Analysis  
In order to obtain the scattering parameters, a general two 

port transmission line is used. Having calculated the current 
densities on the conductor, the current on each port of the 
transmission line is written as a linear combination of complex 
exponentials by using the generalized pencil of function 
(GPOF) method [8] as 
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where l is the distance along the port transmission line, αi is the 
attenuation and βi is the propagation constants of the ith mode 
of current waves. 

2. 2. Simulation Algorithm  
A simplified flowchart of the algorithm according to the 

MPIE-MoM solution method described in the previous sections 
is given in Figure 3. The software starts by reading the layout 
file that includes the operating frequency, layer information, 
meshing parameters, and port definitions. According to the 
meshing parameters, the geometry is subdivided and the 
number of unknowns is determined. After calculating the 
coordinates of the basis and test functions, similarities among 
the inner product terms are tabulated in order to assist the 
computation in the further steps. Then MoM matrix is filled 
using the basis functions and Green’s functions. The resulting 



linear system is solved for the unknown basis amplitudes. 
Finally, circuit parameters are saved. 
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Figure 3.  Simple flowchart of the algorithm 

III. NUMERICAL EXAMPLES 
In this section, the MPIE-MoM formulation is applied to 

new filter configuration consists of coupled microstrip open-
loop resonators. For the examples, general microstrip geometry 
in a layered media is assumed where all layers and the ground 
plane extend to infinity in the horizontal plane, and the 
conductors are lossless and thin. The S-parameters provided 
here are normalized with respect to 50-Ω reference impedance. 
The method used in this work is compared with the results 
obtained from the well-known commercially available full-
wave EM Simulator Sonnet. 

First example is the dual-mode linear phase filter as shown 
in Figure 4. The filter consists of a set of microstrip coupled 
open-loop resonators with a spacing of 1.5mm and an open-gap 
of 0.5mm on a substrate with a thickness of 1.27mm and εr 
=10.2. The size of open-loop resonator is 6.5mm, the width of 
coupled open-loop arms is 1mm and the length of the feed line 
is 3mm. The geometry was analyzed by using the MPIE-MoM 
technique, over a frequency range of 2.0 GHz to 3.0 GHz. 

Figure 5 is comparison of the S-parameters for the dual mode 
linear phase filter. 

  

 
 

Figure 4.  Geometry of the dual-mode linear  phase filter. 
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Figure 5.  Magnitudes of  S11 and S12 of the dual-mode linear  phase filter 

shown in Figure 4. 

Second example is the dual-mode elliptic filter as shown in 
Figure 6. As shown in Figure 6, the difference from dual-mode 
linear phase filter is diagonal placement of resonator feed lines. 
For the same frequency range, analysis results obtained using 
MPIE-MoM technique is represented in Figure 7. 

 

 
 

Figure 6.  Geometry of  dual-mode elliptic filter. 



 
Figure 7.  Magnitudes of  S11 and S12 of  the dual-mode elliptic filter shown 

in Figure 4. 

When seeing frequency response of filters shown in Figure 
5 and 7, both filters represent band-pass filter characteristics. 
The two types of filters have been constructed from same type 
of resonators by exchanging feed lines as cross and diagonally. 

IV. CONCLUSION 
This paper presents a numerically efficient MPIE-MoM 

solution for analysis of microtrip structures in a layered media. 
New microwave filters consists of coupled microstrip open-
loop resonators are analyzed to demonstrate the efficiency and 
accuracy of MPIE-MoM technique. The results obtained are in 

good agreement with the results obtained from well-known EM 
software SONNET. Analyzed new designed filters demonstrate 
linear phase and elliptic frequency characteristics with having 
narrow band and high selectivity features. Because of these 
features, these filters were found to be suitable for sensitive 
microwave circuits needed in mobile communication systems. 
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