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Abstract 

A full-wave space-domain mixed potential integral equation (MPIE) approach, 
discredited with the method of moments (MoM) and used in spatial-domain 
closed-form Green’s functions, is presented for the numerically efficient 
analysis of some passive microwave structures in planary layered medium. The 
spatial-domain Green’s functions for the vector and scalar potentials, 
represented by the Sommerfeld integrals, are approximated by closed-form 
expressions and used in the solution of the MPIE by the MoM. By using the 
closed-form Green’s functions into the MoM, the computational efficiency of 
the MPIE-MoM is significantly improved. The main advantage of the MPIE-
MoM technique allows a large variety of printed circuit structures to be 
characterized. The accuracy and the efficiency of the technique is 
demonstrated at the example of dual-mode filter configurations consist of 
coupled microstrip open-loop resonators, and compared the results with those 
obtained from commercial EM software such as EM Sonnet. 

Keywords: Numerical analysis; mixed potential integral equation; method of 
moments; Green’s function; dual-mode microwave filter 

1. INTRODUCTION 

The study of passive microwave devices embedded in stratified media is 
crucial in current microwave engineering [1,2] and, in particular, numerous 
planar devices have been extensively studied with the use of various integral 
equations and other related techniques [3-5]. Integral equation analysis of 
planar structures in layered media are formulated as electric field integral 
equation (EFIE) or mixed potential integral equation (MPIE) with related 
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Green’s functions [6]. Generally, EFIE calculations take place in the spectral-
domain while MPIE is applied in the spatial-domain [7]. In addition, the MPIE 
formulation uses scalar and vector potentials and benefits from the fact that the 
singularities of both potentials are of the order of 1/R and, therefore, less 
singular than spatial-domain EFIE formulations [8]. Spatial-domain method of 
moments [9] (MoM) is one of the most efficient and robust technique for 
solution of MPIE for printed circuits in planary layered media. The MPIE 
approach is used in spatial domain closed-form Green’s functions and 
discredited with the MoM. More recently, introduction and fast approximation 
of the suitable closed-form Green’s functions have improved the efficiency of 
MPIE-MoM [10,11]. Calculation of the oscillatory and slow converging 
Sommerfeld integral is no more necessary with the use of closed-form Green’s 
functions. In the derivations, main goal is to put these closed-form 
representations in an appropriate form for the solution of MPIE-MoM. 

In this paper, full-wave space domain MPIE-MoM technique is described for 
the efficient and robust analysis of dual-mode filter structures. MPIE is 
formulated as the governing equation and the spatial-domain MoM is used to 
solve for the current densities in the structures. 

2. FORMULATION OF MPIE-MOM 

Consider a general microstrip structure in layered media, as shown in Figure 1. 
The microstrip structures are assumed to be of infinitesimal conductor 
thickness and lossless. The media is assumed to be laterally infinite in 
transverse domain (xy-plane). The thickness and permittivity of each layer are 
denoted as hi, and εri, respectively. The unknown current densities on the 
conductors can be obtained from the MoM solution of pertinent MPIE. 

 
Fig. 1. A general microstrip structure in layered media 

The mixed potential integral equation (MPIE) is written in terms of the scalar 
and the vector potentials as:  
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jw φ= − −∇E A (1) 

Then, the vector and scalar potentials expressed in terms of convolution 
integrals involving surface density J and charge density ρ on the metallization 
in (2) and (3). 

*
A

=A G J (2) 

*qGφ ρ= (3) 

Where GA is the dyadic Green’s function of vector potential, Gq is the 
Green’s function of scalar potential. By employing the continuity equation as 
in (4), the charge density ρ in the scalar potential equation can be written in 
terms of surface current density and from (1), the tangential components of 
electric field on the metallization can be obtain as in (5) and (6).     

. 0jwρ∇ + =J (4) 
1* ( * . )A q

x xx xE jwG J G
jw x

∂
= − + ∇

∂
J (5) 

1* ( * . )A q
y yy yE jwG J G

jw y
∂

= − + ∇
∂

J (6) 

Where
A A
xx yyG G=

. The explicit expression for the Green’s functions of scalar 
potential in (5) and (6) is: 

* . * * yq q qx
x y

JJG G G
x y

∂∂
∇ = +

∂ ∂
J (7) 

Where 
q q
x yG G=

is the Green’s function of scalar potential for a horizontal 
electric dipole. Figure 2 shows the block diagram for the solution of MPIE-
MoM. 
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Fig. 2. The block diagram for the solution of MPIE-MoM 

As procedure of the MoM, in the solution for the surface current density J on 
the metallization, J is expanded as a set of known basis functions with 
unknown coefficients or amplitudes as given as; 

( , ) ( , )( , ) ( , )m n m n
x x x

m n

J x y I B x y=∑∑
 

(8) 

( , ) ( , )( , ) ( , )m n m n
y y y

m n

J x y I B x y=∑∑
 

(9) 

( , ) ( , ),m n m n
x yB B

are the known basis functions 
( , ) ( , ),m n m n
x yI I

are unknown 
coefficients and (m,n)-th is position on the subdivided horizontal conductor. In 
this study, the basis functions used to approximate the current density on the 
metallization are chosen to be rooftop functions, by the use of which the 
unknown current distribution on metallization can be modelled very 
accurately. The discretization of the geometry and basis functions is shown in 
Figure 3. Cell is explained as elemental area of circuit metallization. Figure 3 
shows each elemental rooftop basis function covers two cells and sources are 
modelled using a half rooftop. Since the rooftops overlap, the sum of the two 
rooftops covers three cells. The choices of basis functions are crucial to obtain 
an accurate and efficient solution of MPIE-MoM [12]. 
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Fig.3. The discretization of the geometry and basis functions. 

After substituting the expanded current densities into the electric field 
expressions of (5) and (6), the boundary conditions are applied. Application of 
the boundary conditions, which are the tangential electrical field components is 
identically zero in the metallization of the circuit, are performed in the integral 
sense through the well-known testing procedure of the MoM, where the field 

expressions are multiplied by testing functions 
( , ) ( , ),m n m n

x yT T′ ′ ′ ′

 and integrated 
on the conductors and set to zero. Note that testing functions chosen to be 
rooftop like basis functions.  

( , ) ( , ) ( ) ( )

( , ) ( , ) ( ) ( )

( , ) ( , ) ( ) ( )

1

1

A m n m n n n
i ii i i iS iS

m n n

q m n m n n n
x x x xS xS

m n n

q m n m n m m
y y y yS yS

m n n

E jwG I B I B

G I B I B
jw i x

G I B I B
jw i y

⎧ ⎫= − ∗ +⎨ ⎬
⎩ ⎭

⎛ ⎞∂ ∂ ⎧ ⎫+ ∗ +⎨ ⎬⎜ ⎟∂ ∂ ⎩ ⎭⎝ ⎠
⎛ ⎞∂ ∂ ⎧ ⎫+ ∗ +⎨ ⎬⎜ ⎟∂ ∂ ⎩ ⎭⎝ ⎠

∑∑ ∑

∑∑ ∑

∑∑ ∑

(10) 

Testing of Ei (i=x,y), applying boundary conditions in on the horizontal 
conductor is denoted as follows: 

( , )

( , )

, 0

, 0

m n
x x

m n
y y

T E

T E

′ ′

′ ′

=

=
(11) 

For example, after multiplying Ex with related testing function and arranging 
the terms, the following equation is obtained: 
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( , ) ( , ) ( , ) ( , ) ( ,
2

( , ) ( , ) ( , )
2

( ) ( , ) ( ) ( , ) ( )
2

1, * , *

1 , *

1, * , *

m n m n A m n m n q m n
x x xx x x x x

m n

m n m n q m n
y x y y

m n

n m n A n m n q n
xS x xx xS x x xS

I T G B T G B
w x x

I T G B
w x y

I T G B T G B
w x x

′ ′ ′ ′

′ ′

′ ′ ′ ′

⎧ ∂ ∂⎡+⎨ ⎢∂ ∂⎣⎩
⎧ ⎫⎡ ⎤∂ ∂⎪ ⎪+ ⎨ ⎬⎢ ⎥∂ ∂⎣ ⎦⎪ ⎪⎩ ⎭

⎧ ∂ ∂⎡ ⎤+ + ⎢ ⎥∂ ∂⎣ ⎦

∑∑

∑∑

∑

( ) ( , ) ( )
2

1 , * 0m m n q m
yS x y yS

m
I T G B

w x y
′ ′

⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫⎡ ⎤∂ ∂⎪ ⎪+ =⎨ ⎬⎢ ⎥∂ ∂⎣ ⎦⎪ ⎪⎩ ⎭
∑

 

(12
) 

In this expression, the term with unknown coefficient 
( , )m n
xI is elements of the 

xxZ sub matrix. Similarly term with coefficient 
( , )m n
yI

is entry of the xyZ
sub 

matrix. The terms with coefficients
( )n
xSI and

( )m
ySI

constitute the elements of the 

excitation matrix xV . Note that < , > and * denote inner product and 
convolution integral, respectively,  and they are defined as follows: 

*( , ), ( , ) ( , ) ( , )f x y g x y dxdy f x y g x y= ∫∫ (13) 

( , )* ( , ) ( , ). ( , )f x y g x y dx dy f x x y y g x y′ ′ ′ ′ ′ ′= − −∫∫ (14) 

As a result of all these steps, two linear equations for the problem are obtained 
and have the following form: 

xx x xy y x

yx x yy y y

Z I Z I V

Z I Z I V

+ =

+ =
(15) 

The resulting matrix equation for the unknown amplitudes of the basis 
functions has the following form: 

[ ] [ ]
{

[ ]
{

xx xy x x

yx yy y y

I VZ

Z Z I V
Z Z I V
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦14243

(16) 
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As an example, a typical matrix term involving both the scalar and the vector 
Green’s functions are given as 

( , )
( , ) ( , ) ( , )

2

1, * , *
m n

m n A m n m n q x
xx x xx x x x

BZ T G B T G
w x x

′ ′ ′ ′ ⎡ ⎤∂∂
= + ⎢ ⎥∂ ∂⎣ ⎦

(17) 

 After forming the matrix entries, two major steps are left to find the 
unknown coefficients of basis functions: i) evaluation of these matrix entries, 
ii) solution of the matrix equation for the coefficients of the basis functions. 
Analytical methods introduced by Alatan et al. [13,14] are used for the 
evaluation of these matrix entries. After the evaluation of inner product terms 
and substituting them into (16), the current densities on the conductors are 
obtained by solving the matrix equation. Well known, computationally 
expensive LU decomposition algorithm is used for the solution of resulting 
matrix equation. Finally, the circuit parameters such as the scattering 
parameters are extracted from the current distribution. 

3 GREEN’S FUNCTIONS IN MPIE FORMULATIONS FOR 
PLANARLY LAYERED MEDIA 

Green’s functions play an important role in the integral equations for 
electromagnetic problems. In the application of the spatial-domain MoM to the 
solution of MPIE, one needs to calculate the vector and scalar potentials 
Green’s functions in the spatial-domain. The Green’s functions in the spatial 
domain are obtained from their frequency domain counterparts with the use of 
an integral transformation called the Hankel transform or the Sommerfeld 
integral [10]. This transformation is given in the following equation: 

(2)1 ( ) ( )
4 o

SIP

G dk k H k G kρ ρ ρ ρρ
π

= ∫ %

 
(18) 

where, G and G%  are the spatial and frequency domain Green’s functions 

respectively, 
)2(

0H  is the Hankel function of the second kind and SIP is the 
Sommerfeld integral path. The Sommerfeld integral is a complex valued 
function with singularities and its integration path extends to infinity; hence, 
its numerical evaluation is difficult and time consuming. It has been shown 
that this difficulty can be overcome by approximating the frequency domain 
Green’s functions in terms of complex exponentials of which Hankel 
transforms can be calculated analytically with the use of the following 
Sommerfeld identity [15]: 
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(2) ( )
2

zjk zjkr

o
zSIP

e j edk k H k
r kρ ρ ρ ρ

−−

= − ∫ (19) 

A complete set of closed-form spatial Green’s functions are introduced by 
Dural et al. [10] for general sources and plenary layered media. Then, a new 
robust approach based on a two-level approximation has been proposed for 
derivation of closed-form Green’s functions for plenary layered media by 
Aksun [11]. The most important step of this approach is the use of generalized 
pencil of function (GPOF) method for deriving the closed-form Green’s 
functions [16]. This method is more robust and less noisy, and also provides a 
good measure for choosing the number of exponentials required in the 
approximation. In this study, frequency domain Green’s functions are sampled 
across the path obtained by appropriately modifying the SIP shown in Figure 
4, and in order to convert the spectral-domain Green's functions to spatial-
domain by evaluating the Sommerfeld integral, a GPOF algorithm is used. The 
SIP is divided into two segments, Cap1 and Cap2, which have the following 
parametric equations: 

Im[ ]kρ

Re[ ]kρ
0k

SIP

mk
max2

kρ max1
kρ

Cap1

Cap2

Fig.4. Sommerfeld integration path and integration path for two-level approximation 
[11] 

For Cap1: [ ]2iz i ok jk T t= − +
 

For Cap2: 2

(1 )
iz i

o

tk jk jt
T

⎡ ⎤
= − − + −⎢ ⎥

⎣ ⎦  

(20) 
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After sampling the frequency domain Green’s function except the 1/2jkzi term, 
GPOF method is used to obtain the following exponential approximation of the 
function: 

�
1 2

1 2
1 2

1 1

1
2

n z n z

i

N N
b k b k

n n
n nz

G a e a e
j k

− −

= =

⎧ ⎫
= +⎨ ⎬

⎩ ⎭
∑ ∑ (21) 

where, a1n, a2n and b1n, b2n denote, the coefficients and exponentials 
obtained by applying the GPOF method to the first and second segments of the 
two level approach. After the frequency domain Green’s functions are 
expressed in terms of sums of complex exponentials, each exponential in (21) 
is transformed into the spatial domain by using the Sommerfeld identity given 
in (19). The resulting spatial domain Green’s functions are given in the 
following: 

1 21 2

1 2
1 21 1

i n i nN Njk r jk r

n n
n nn n

e eG a a
r r

− −

= =

≅ +∑ ∑ (22) 

where, 
2 2x yρ = + , 

2 2
1 1n nr bρ= − , 

2 2
2 2n nr bρ= −  and ki is the wave 

number of the ith layer. 

4 SCATTERING PARAMETER ANALYSIS 

In order to obtain the scattering parameters, a two port transmission line is 
commonly used. For a two ports, generalized pencil of function (GPOF) 
procedure is applied to calculate the S-parameters. Having calculated the 
current densities on the conductors, the current on each port of the 
transmission line is written as a linear combination of exponentials as 

( )

1
( ) . i i

N
j l

i
i

I l I e α β+

=

≈∑ (23) 

where αi and βi correspond to the attenuation and propagation constants of the 
ith mode of the current, respectively, and l is the distance along the port 
transmission line. The current can be expressed by two exponentials with 
complex coefficients corresponding to the incident and reflected waves at the 
corresponding ports. First, port1 is excited and current distributions are 
expressed as   

1 1
1 11 11( ) j l j lI l I e I eβ β− ++ −= +  

2 2
2 21 21( ) j l j lI l I e I eβ β− ++ −= +

(24) 
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where Iij are the current wave coefficient on the ith port transmission line 
when port j is excited. These current wave coefficients can be related to each 
other by using S-parameter matrix 

11 1211 11

21 2221 21

S SI I
S SI I

− +

− −

⎡ ⎤ ⎡ ⎤− ⎡ ⎤
=⎢ ⎥ ⎢ ⎥⎢ ⎥ −⎣ ⎦⎣ ⎦ ⎣ ⎦

(25) 

Then port2 is excited and current distribution on the entire structure is again 
solved and the port transmission line current densities are expressed as 

1 1
1 12 12( ) j l j lI l I e I eβ β− ++ −= +  

2 2
2 22 22( ) j l j lI l I e I eβ β− ++ −= +

(26) 

Similarly, these current wave coefficients can be written in terms of S-
parameters as 

11 1212 12

21 2222 22

S SI I
S SI I

− +

− −

⎡ ⎤ ⎡ ⎤− ⎡ ⎤
=⎢ ⎥ ⎢ ⎥⎢ ⎥ −⎣ ⎦⎣ ⎦ ⎣ ⎦

(27) 

Since the end of approximations it is found that αi’s are small compared to βi’s 
αi’s are not written in the above equations. In order to find the S-parameters 
for a general two port network, following the matrix equation, that is elated 
with (24) and (25), is used. 

1111 12 11

1211 12 12

2121 22 21

2221 22 22

0 0
0 0

0 0
0 0

SI I I
SI I I
SI I I
SI I I

+ + −

+ + −

+ + −

+ + −

⎡ ⎤ ⎡ ⎤−⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ −⎢ ⎥ ⎢ ⎥⎢ ⎥ =
⎢ ⎥ ⎢ ⎥⎢ ⎥ −
⎢ ⎥ ⎢ ⎥⎢ ⎥

−⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

(28) 

Finally, the S-parameters obtained are converted to the S-parameters with the 
reference impedance of 50Ω. It is necessary to know the characteristic 
impedances of the port transmission lines to convert generalized S-parameters 
to normalized ones. Due to the exact calculation of the characteristic 
impedance of a microstrip line in a layered medium is quite time consuming, a 
method based on a quasi-TEM approach is used in this article. This method 
provides analytical expressions for the characteristic impedance of a microstrip 
line and a stripline [17]. 
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5 SIMULATION ALGORITHM 

A simplified flowchart of the algorithm according to the MPIE-MoM solution 
method described in the previous sections is given in Figure 5. The software 
starts by reading the layout file that includes the operating frequency, layer 
information, meshing parameters, and port definitions. According to the 
meshing parameters, the geometry is subdivided and number of unknown is 
determined. After calculating the coordinates of the basis and test functions, 
similarities among the inner product terms are tabulated in order to assist the 
computation in the further steps. Then MoM matrix is filled using the basis 
functions and Green’s functions. The resulting linear system is solved for the 
unknown basis amplitudes. Finally, circuit parameters are saved. 

 
 

Fig.5. Simple flowchart of the algorithm 

6 NUMERICAL EXAMPLES 

In this section, the MPIE-MoM technique is applied to microwave filter 
configuration consists of coupled microstrip open-loop resonators. For the 
examples, general microstrip geometry in a layered media is assumed where 
all layers and the ground plane extend to infinity in the horizontal plane, and 
the conductors are lossless and infinitesimally thin. The S-parameters provided 
here are normalized with respect to 50-Ω reference impedance. The results are 
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compared with the well-known commercially available full-wave EM 
Simulator Sonnet. 

Figure 6 shows the analyzed dual-mod microwave planar filter configuration 
[18,19]. First example is the dual-mode linear phase filter as shown in Figure 
6(a) and second example is the dual-mode elliptic filter as shown Figure 6(b). 
These filters have been constructed from same type of resonators by 
exchanging feed lines as cross and diagonally. The filters consist of  a set of 
microstrip coupled open-loop resonators with a spacing of 1.5mm and an 
open-gap of 0.5mm on a substrate with a thickness of 1.27mm and εr =10.2. 
The size of open-loop arms is 1mm and the length of the feed line is 3mm. The 
filters were analyzed by using the MPIE-MoM technique, over a frequency of 
2.0 GHz to 3.0 GHz. 

 
Fig.6. Geometry of dual-mode filters configuration. (a) Dual-mode linear phase filter, 

(b) Dual-mode elliptic filter 

The geometries are a symmetric structure so S11= S22 and S12= S21. S11 and 
S12 of the filters are obtained using the MPIE-MoM technique and compared 
to the results of a commercial software package called “em” by Sonnet 
Software, Inc [20]. Magnitudes of S11 and S12 of the dual-mode linear phase 
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filter and the dual-mode elliptic filter shown in Figure 7(a) and 7(b), 
respectively. There is a good agreement between results of the MPIE-MoM 
technique and the commercial software package for magnitude of S-
parameters. Both filters represent band-pass filter characteristics, when seeing 
frequency response of filters. 

7 CONCLUSIONS 

We have presented a numerically efficient MPIE-MoM technique for analysis 
of dual-mode filter. The method of moments is applied to the solution of the 
mixed potential integral equation in the spatial-domain in conjunction with the 
closed-form Green’s functions. Microwave filters consist of coupled microstrip 
open-loop resonators are analyzed to demonstrate the efficiency and accuracy 
of MPIE-MoM technique. The results obtained are in good agreement with the 
results obtained from well-known EM software SONNET. The main 
advantage of MPIE-MoM technique is its generality for open geometries and it 
allows a large variety of microstrip structures to be characterized with high 
accuracy and efficiency 
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.  

Fig.7. Magnitudes of S11 and S12 of the dual-mode linear phase filter and the dual-
mode elliptic filter 

APPENDIX A-GENERALIZED PENCIL OF FUNCTION 
ALGORITHM 

The generalized pencil of function method is used to estimate the poles of an 
EM system from its transient response [16,21]. The generalized pencil of 
function (GPOF) algorithm is used to approximate the spectral domain Green’s 
functions with complex exponentials. 

Consider an EM transient signal which can be approximated as follows 

1
. 0,1,..., 1i

M
s tk

k i
i

y b e k Nδ

=

= = −∑ (A.1) 

where bi is the complex residues, si are the complex poles, and δt is the 
sampling interval. In order to find the poles, one can use the following 
algorithm [16,21]: 

i) Construct the following matrices, 

[ ]1 0 1 1, , , LY y y y −= L (A.2) 

[ ]2 1 2, , , LY y y y= L (A.3) 
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[ ]1 1, , , T
i i i i N Ly y y y+ + − −= L (A.4) 

and L is the pencil parameter, and its optimal choice is around L = N/2 [16,21]. 

ii) Find a Z matrix as follows, 

[ ]
[ ]
[ ]

1
1( )H

M M

M M

M M

V D U SVD Y
V V

U U

D D

−

×

×

×

=

←

←

←

(A.5) 

1
2

HZ D U Y V−= (A.6) 

where SVD(·) and superscript H denote the singular value decomposition 
process and the complex conjugate transpose of a matrix, respectively. The 
number of exponentials, M, is selected according to the significant singular 
values of the matrix Y1. 

iii) The poles of the system are obtained as 
log 1,2, ,i

i
zs i M

tδ
= = L (A.7) 

where zi’s are the eigen values of the Z matrix evaluated in step ii. 

iv) The residues are found from the least-squares solution of the following 
system 

01

11 2 2

1 1 1
11 2

1 1 1

m

N N N
NM M

yb
yz z z b

yz z z b− − −
−

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ =
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦

L

L

MM M L M M

L

(A.8) 
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