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CHAPTER 1 

INTRODUCTION 

The Internet presents a unique interconnected system which enables devices to 

communicate globally using set of standard protocols and connecting various 

heterogeneous networks - academically, business, governments etc. In the first years, the 

Internet was represented by static web sites and email communication. Nowadays, 

different forms of Internet implementation could be seen everywhere, part of many 

different aspects of our lives providing plenty of services and applications, and trying to 

meet each user’s needs no matter of time and place. The main “secret” is hidden behind 

the digitalization of the user and all of the user-friendly and automated mechanisms. 

Internet of Things represents a general concept for the facility of network contrivances to 

sense and accumulate data from the world around us, and then share that data across the 

Internet where it can be processed and utilized for several motivating purposes. 

1.1     Literature Review  

The Internet of Things is an already known term nowadays and it is becoming bigger and 

bigger overtime with all sorts of sensors and systems being developed to help people ease 

up their lives. The number of connected devices continues to grow worldwide but also 

the diversity and the applications in the real world are immense, making it an appealing 

industry to work on [1].  

A lot of companies are working on new devices and new solutions to deal with the growth 

of the connected devices, it is a massive growing industry. It possesses the power to 

transform every single environment such as agriculture, transportation, manufacturing, 

smart houses even entire cities. Companies are working on making new devices for every 

possible scenario but also improving communication protocols as well as security. It is 
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estimated that around 2015 10 billion devices were connected and by 2020 will be 

connected 20 to 30 billion devices, as costs continue to drop and demand continues to 

grow [2]. 

With today’s advancements in technology, it became possible to address a larger number 

of problems regarding accessibility and also monitoring and interacting more thoroughly 

with systems. The capabilities of the system is based on the usage of unmanned surface 

vehicle (USV) that help son maritime monitoring tasks using multidrone swarms [3] for 

extended spatial resolution. The system may detect such as cleaning oil spill [4], or for 

general environmental condition monitoring. 

The Internet of Things help to solve a lot of problems in different fields: in smart cities, 

IoT applications are related with parking issues, noise, traffic, illumination monitoring 

[5]; emergency systems for earthquakes [6]; precision agriculture applications in culture 

process optimization [7]. IoT are used to deliver information from the sensors and to the 

actuators. 

The near future, millions of unmanned aerial vehicles (UAVs), also known as drones, are 

expected to be rapidly deployed in diverse sectors of our daily life performing wide-

ranging activities from delivering a package to diving into water for a specific underwater 

operation [8]. 

Regarding their utilization, UAVs’ applications can be broadly divided into civilian and 

military models. The former can be utilized for governmental or nongovernmental 

purposes; e.g., employing UAVs in rescue operations to recover from large-scale disaster 

events, such as the great East Japan earthquake [9], the natural disasters of Indonesia [10], 

and the earthquake of Nepal [11]. 

However, in the near future, drones will be used not only for public protection and disaster 

relief operations [12], [13] but also for many other civilian, commercial and governmental 

services. Some good examples are surveillance and reconnaissance [14], public safety 

[15], homeland security [16], [17], forest fire monitoring [18], environmental monitoring 

[19], security and border surveillance [12], farming [13], or even Internet delivery [20], 

[21], architecture surveillance [22], goods transportations [23], [24] such as Amazon 

Prime Air [25] designed to safely deliver packages to customers within 30 minutes using 

small drones. With their countless applications, UAVs will soon be influentially a part of 

our daily life; a necessary technology similar to today’s smartphones. 
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Moreover, interestingly from the technology perspective, UAVs are foreseen as an 

important component of an advanced cyber-physical Internet of Things (IoT) ecosystem 

[26]. Based on the definition, IoT aims at enabling things to be connected anytime, 

anywhere ideally using any network and providing any service. The IoT concept allows 

UAVs to become an integral part of IoT infrastructure. This is due to the fact that UAVs 

possess unique characteristics in being dynamic, easy-to-deploy, easy-to-reprogram 

during run-time, capable of measuring anything anywhere, and capable of flying in a 

controlled airspace with a high degree of autonomy [27]. 

1.2     Objective of Thesis  

This thesis proposes a case study for designing a system that uses an Internet of Things 

(IoT) network to make the control for Unmanned Aerial Vehicle (drone) from an infant 

distance by simulating the signals coming from RF receiver and remote control.  

These signals will be provided from raspberry pi device to apply the signals of Roll, 

Pitch, Yaw, and Throttle to take control of UAV. The system uses an interaction between 

raspberry pi and flight controller to overcome the complexity of stability and PID control 

calculations. 

The control is designed using python 2.7 GUI (Graphical User Interface) to take control 

for flight, also the design is containing the capability of tracking objects based on the 

BGR colour moment calculations. 

1.3     Original Contribution  

This thesis proposes a case study for designing a system that uses an Internet of Things 

(IoT) to make the control for Unmanned Aerial Vehicle (drone) from an infant distance 

by simulating the signals coming from RF receiver and remote control, these signals will 

be provided from raspberry pi device to apply the signals of Roll, Pitch, Yaw, and 

Throttle to take control of UAV, the system uses an interaction between raspberry pi and 

flight controller to overcome the complexity of stability and PID control calculations. The 

control is designed using python 2.7 GUI (Graphical User Interface) to take control for 

flight, also the design is containing the capability of tracking objects based on the BGR 

color moment calculations. 
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1.4     Background for the Internet of Things  

The most vital part of achieving IoT is communication, because in order to interconnect 

different devices, they must be able to communicate. All other properties, such as sensing, 

maneuvering, being able to capture, store, and process data are unnecessary; unless the 

device specifically requires one of these properties. However, the ability to communicate 

is essential when labelling a device as an IoT device. How this communication is 

performed is less important, since the actual physical and link layer communication 

within IoT can be realized in many ways. 

Case C in Figure (1.1) shows that devices are not always required to communicate through 

a communication network. For example, if two devices are close to each other it might 

be simpler to directly communicate via for example radio using technologies such as 

Bluetooth or ZigBee (protocols which both enable direct communication). In contrast, in 

Case A in Figure (1.1) a device might communicate via a gateway using one protocol 

(such a IPv6 over Low power Wireless Personal Area Networks (6LoWPAN)) and then 

the gateway could communicate using another protocol (e.g. IPv4) over a communication 

network such as the Internet. Case B in Figure (1.1) illustrates two devices which are 

directly communicating with one another without requiring a gateway where both devices 

are directly connected to the communication network and thus are able to communicate 

even if they are located in different places. 

Figure 1.1 Overview of the Internet of Things [28]. 

A physical thing can be mapped into the information world via one or more virtual things, 

while virtual things do not necessarily need to be associated with any physical thing and 
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can exist independently of any physical existence. For example, a physical thing might 

execute multiple applications and thereby have multiple identities in the virtual world. 

Similarly a virtual thing might also have many identities in the virtual world. For example, 

a virtual thing could be a video (file) on a USB-drive. Such a file might have multiple file 

names that refer to it and it might even have multiple instances (copies), potentially these 

“copies” might have different encodings, resolutions, etc. 

How does one differentiate an IoT device from any other device? Table (1.1) states some 

fundamental characteristics for IoT. These characteristics may provide a clearer picture 

of the actual differences between IoTs and other devices [28] . 

Table 1.1 Characteristics of the Internet of Things 

Characteristics Description 

Interconnectivity 
Everything can be connected to the global information and 
communication infrastructure 

Things-related 
services 

Provides things-related services within the constraints of 
things, such as privacy and semantic consistency between 
physical and virtual thing. 

Heterogeneity 

Devices within IoT have different hardware and use 
different networks but they can still interact with other 
devices through different networks. 

(i.e., Case A in Figure (1.1). using different protocols or 
hardware, but still be able to communicate) 

Dynamic changes 
The state of a device can change dynamically, thus the 
number of devices can vary. (Device states: connected, 
disconnected, waking up, and sleeping) 

Enormous scale 

The number of devices operating and communicating will 
be larger than the number of devices in the current Internet. 
Most of this communication will be device to device 
instead of human to device. 

Interconnectivity is the basic characteristic for IoT since the whole concept is built upon 

the idea of being able to interconnect everything (despite the traffic going through 

different networks). Things related services resolves around devices being constrained by 

its CPU performance, memory, and power which limits what a device can do, when it can 

do it, and how often it can do it. 
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To provide semantic consistency a physical thing reporting temperatures at some intervals 

may be mapped to a virtual thing that tries to estimate the temperature between 

measurements and thus may report a different temperate value than the physical value. 

When the next measurement arrives the virtual device may or may not update its estimate 

in order to maintain consistency with the physical thing. 

In Table (1.1) the biggest challenge will be supporting heterogeneity because there are a 

lot of different protocols in use. Interacting with multiple devices through multiple 

networks will be challenging from both security and technical perspectives, because the 

protocols may differ depending upon whether the device is communicating through one 

interface or another (e.g., wide area cellular radio, Ethernet, or Wi-Fi). Therefore, there 

are some requirements relevant for IoT, such as security and privacy protection. If 

everything is connected, then multiple security threats will arise causing confidentiality, 

integrity, availability, and authenticity to become more important – especially because 

there will be more data and services available and because more and more activities will 

depend upon this information. Security also includes privacy consideration, since data 

collected by for instance a sensor might contain information that is sensitive personal 

information. Integrity has to be considered in all stages (sensing, storing, transmission, 

etc.) that means that the security within IoT will have to adapt to a variety of devices and 

networks [28]. 

A thing that reports a geographical location can for privacy reasons add noise to its 

position (i.e. degrade its accuracy) thus the physical location compared to the virtual 

location can differ. This prevents the device from having an exact location mapped to it 

thus protecting spatial privacy. 

1.5     The IoT reference model  

The ITU-T has defined a reference model for IoT. This model is divided into the four 

layers: application layer, service support and application support layer, network layer and 

device layer see Figure (1.2), each one of these layers also includes management and 

security capabilities. As shown in the Figure (1.2), these capabilities have both generic 

and specific capabilities that can cut across multiple layers. 
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Figure 1.2 ITU-T reference model for IoT. 

The application layer contains IoT applications which require certain support capabilities 

from the underlying layer to function. The service and application support layer consists 

of generic support capabilities which can be used by IoT applications, examples of such 

capabilities could be data processing or storage. The specific support capabilities are 

those other than the generic capabilities which are required to create support for 

diversified applications [28]. 

The network layer is divided into networking and transport capabilities. The networking 

capabilities provide relevant control functions for network connectivity, while the 

transport capabilities focus on the transport of IoT service and application specific data. 

At the bottom of the model, there is the device layer in which the device capabilities 

include direct and indirect interaction with the communication network. Unlike direct 

interaction, indirect interaction requires a gateway to be able to send and receive 

information via the network. Two other capabilities are ad hoc networking and sleeping 

and waking up which enable devices to connect in an ad hoc manner and saving energy 

(respectively) [28]. 

The device layer also includes gateway capabilities to support devices connected via 

different types of wired and wireless technologies by supporting multiple interfaces. In 

some situations, protocol conversion is needed to support communication between 

devices using different protocols at the device and network layer [28]. 
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Generic management capabilities include device management (such as remote device 

activation, de-activation, diagnostics, and firmware or software updates) and local 

network topology, traffic, and congestion management [28]. 

1.6     The use of IoT today 

Since 1999 the term IoT has been used in many places and in many ways. Multiple 

research papers, books, and white papers about IoT have been written in order to help 

both the public and companies understand what IoT is. Many definitions of IoT have been 

independently introduced by both individuals and companies [29]. 

Technical companies that are already somewhat involved in IoT and who believe that IoT 

has a business potential for their future mostly use the term to describe a way of improving 

efficiency of production and innovation. Cisco defines IoT as concept where more and 

more things will be connected to the Internet in order to ease people’s daily life. However, 

as we connect more things, the need for IPv6, big data, and cloud computing will increase 

and the concept of IoT will transition into an Internet of Everything (IoE). Cisco views 

IoT as a phase where the number of connected devices increases, while this phase changes 

once everything connected [30]. 

IBM has a definition of IoT which is more about connecting systems together, rather than 

just connecting devices together; thus, their focus is on creating a system of systems. They 

describe IoT as a means to create a smarter planet. They split these means into two parts: 

“One is to be more efficient, be less destructive, to connect different aspects of life which 

do affect each other in more conscious, deliberate and intelligent ways. But the other is 

also to generate fundamentally new insights, new activity, new forms of social relations” 

[31]. 

Individual definitions include that given by Dr John Barrett, Head of Academic Studies 

for Embedded Systems Research at Cork Institute of Technology in a TEDx talk on the 

requirement for IoT: In the context of IoT all things will need a unique identity (IPv6), 

ability to communicate, in some way sense (see, smell, touch, etc.) and to be controlled. 

With all the collected data there is a need for a practical and efficient way to present the 

data that is relevant in a certain context. Deciding what is relevant becomes a core 

question. It is up to the things themselves to decide what is relevant and what is not. In 

some cases the “relevant” data may be misused in a way that negatively effects people. 

For example, a device monitoring your health can be used to notify the hospital if your 
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health is in critical condition. However, by using the same information as the hospital, 

your insurance company automatically increases your health insurance premium by 25% 

[32]. 

The definition by ITU-T highlighted the enabling of services and the interconnecting of 

things. This should be made possible by using existing and evolving communication 

technologies. ITU-T defines a three dimensional space in which IoT adds one of the 

dimensions (anything communication) to the information and communication 

technologies which already provide the two others: "any time" and "any place"). In other 

words, previously we could communicate at any time and place, but with IoT we can 

communicate with any “thing”[1]. 

Even though businesses, individuals, and papers explain IoT in slightly different ways, 

the similarity of their definitions centres on the interconnecting of things. The difference 

in their definitions is how they present the concept. Businesses mostly focus on the 

possibilities within IoT with regards to efficiency and innovation, but do not mention the 

security threats which may arise. This does not mean that these businesses are unaware 

of potential risks and that they do not have a suitable plan regarding IoT (although this 

could be true). However, business may simply choose not to publicly announce the risks 

they see with the concept of IoT nor how they plan to secure it. For a business it is always 

valuable to possess information which your opponent does not. While at the same time 

security via obscurity has been found time and again to not really provide security! 

1.7     Fields of IoT 

The term IoT is being used in different fields, such as the body, homes, cities, industry, 

and the global environment. The following points from [1].  

• In terms of the body, IoT enables sensing and connectivity, for example tracking 

activity, health status, and other relevant information could improve not only the 

user’s daily life, but also their future health by preventing bad habits. However, 

this could come at the cost of a tremendous decrease in personal integrity and 

personal autonomy. Hence there are both individual and societal issues that have 

to be addressed with this sort of IoT. 

• When talking about the home, IoT is often considered in terms of remote and local 

monitoring and management of different home electronics and lights, or simply 

to keep plants in the yard alive by using an automatic watering system. Today this 
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is becoming a very important area as more and more areas are facing shortage of 

water, hence traditional approaches to watering house plants and gardens are no 

longer feasible. 

• In correlation to cities, the term IoT is used to describe systems that effectively 

gather and process information generated by various infrastructures, for example 

monitoring centres for traffic lights, street lights, camera surveillance and the 

power grid. These systems offer the potential to improve the flow of vehicles and 

people through the city centres and also greatly improving the energy efficiency 

of transport systems, while also improving personal and societal safety. 

• Optimizations of operations, boosting productivity, saving resources, and 

reducing costs are typically the main goals of IoT solutions applied in industry. 

For example, industry might use IoT to keep track of business assets, improve 

environmental safety, and maintain quality and consistency in a production 

process. This is not only a matter of companies seeking to be “green” but also 

because there are very substantial economic advantages to understanding how to 

do better process control (in terms of maintaining quality), but also lessening the 

harmful effects upon the environment. 

• Last, but not least important, is environmental monitoring where IoT can help us 

understand and better manage those resources we have. Sensors can help protect 

wildlife, track water usage and flows, monitor local weather, monitor use of 

natural resources, or give warnings before and after natural disasters to prepare 

people for what is to come. In fact, it appears that to achieve high environmental 

efficiency requires increasing use of information technology (whether this is in 

production, consumption, recycling, or post-recycling phases). 

1.8     Summaries of IoT 

IoT includes different objects with different capabilities, which have a common way of 

communicating (a communication chain through a communication network) for enabling 

transfer of information, where this information is understood by two or more objects in 

order to make a process more efficient; frequently by minimizing human factors and 

interaction. 

Objects include both virtual and physical objects, but are not limited to: 
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 Electronic devices (e.g. computers, mobile phones, televisions, machines, and 

robots) and 

 Sensors (connected through devices or gateways) 

Communicating includes: 

 Different protocols and technologies for sending digital or analogue signals 

through nodes (e.g. Constrained Application Protocol, File Transfer Protocol, 

Hypertext Transfer Protocol, etc. in Local Area Networks, Wide Area Networks, 

Body Area Networks, Wi-Fi, Ethernet, fibre optic links, radio etc.) 

1.9     Unmanned Aerial Vehicles 

Drone, as a definition is an aircraft without human on board, drones some times are called 

unmanned aerial vehicles or unmanned aircraft system, in another point of view it is a 

robot that flies. 

These aircrafts may be controlled remotely or can be autonomous through flight system 

that use software on an embedded systems using sensors and GPS. 

In the past years, the main use of drones was related military applications, 

The drones were used mainly in anti-aircraft target practice and weapon platforms , now 

days they are used in civilian applications like search, rescue, weather monitoring , traffic 

monitoring, delivery services …etc. 

The drone (plane shaped) called "Queen Bee" is considered as the first drone used, which 

was supplied with a radio signal for controlling the servos-operated parts. 

The plane could be piloted from the seat in front, but it flews unmanned and it was shot 

by gunners in training. 

In 2012, a man called Chris Anderson retired from his work to dedicate himself to a new 

drone company, 3D Robotics. The company started by constructing a personal drone for 

hobbyist. Nowadays it is marketing its solutions for film and photography companies, 

telecom businesses…etc. 

In 2013, amazon was a leader in the use of drones in delivery activities, since then the 

others started to use the drones for the same purpose like State University and Virginia 

Polytechnic Institute in testing Project Wing, to make deliveries starting with burritos 

produced. 
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The most common use for drones in drone surveillance and drone journalism, the most 

important thing in drone is it can be used to access locations that is impossible for human 

to get and it can do things a human can not do. 

The process of drone education is expanded, for example Embry-Riddle Aeronautical 

University now offers a Bachelor degree in unmanned systems and it is applications, also 

it gives a master degree for unmanned systems. 

In 2016 Business Insider BI Intelligence forecasted that an increase in drone sectors in 

revenues and shipment by 2021, will reach 29 million shipments in worldwide. 

Integration between drones technology with the IoT sensor networks can produce a great 

help for agricultural companies to monitor areas, lands and crops, also it can produce a 

great achievement to the energy companies for monitoring power lines and operational 

equipment. Insurance companies can take benefit from drones in properties monitoring 

and claims. 

1.10     Thesis Outline 

This thesis contains of five chapters. The first chapter about general concepts of IoT and 

related works with ours. The second chapter about hardware components that been used 

in our work. The third chapter we explained which materials used in our work and how 

assembled. In fourth chapter the quad copter simulation and PID parameter are showed. 

And the fifth chapter is the conclusion of thesis.  
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CHAPTER 2 

HARDWARE COMPONENTS 

This thesis proposes a case study for designing a system that uses an Internet of Things 

(IoT) to make the control for Unmanned Aerial Vehicle (drone) from an infant distance 

by simulating the signals coming from RF receiver and remote control, these signals will 

be provided from raspberry pi device to apply the signals of Roll, Pitch, Yaw, and 

Throttle to take control of UAV, the system uses an interaction between raspberry pi and 

flight controller to overcome the complexity of stability and PID control calculations. The 

control is designed using python 2.7 GUI (Graphical User Interface) to take control for 

flight, also the design is containing the capability of tracking objects based on the BGR 

color moment calculations. 

 UAVs Components 

There are many different types of frames and formations that used to create UAVs. 

2.1.1 UAV Frame Types 

The most famous types of UAV frames are: 

1. Tricopter: In this type, the UAV has three arms, each connected to one motor. 

The front of the UAV inclines to be between two of the arms (Y3). The angle 

between the arms can be any degree, but generally and most likely is to be 120 

degrees, as shown in Fig (2.1).  

The Advantages of this type is flying more homogeneous to an airplane in the 

forward motion. Price is theoretically lowest since it utilizes the fewest number of 

a brushless motor. And the disadvantages are the design utilizes a normal servo 

motor to rotate the rear motor and as such, because of the copter is not symmetric. 
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The design is less modest than many other multi-rotors. The rear arm is more 

intricate because of servo motor needs to be mounted along the axis. In 

integration, not all flight controllers support this configuration. 

 

 

 

 

 

 

 

 

Figure 2.1 Tricopter frame. 

2. Quadcopter: In this type, a UAV has four arms, each arm connected to one motor. 

The front of the UAV looks to be between two arms (× configuration), but it can 

also be over an arm (+ configuration), as shown in Fig (2.2). Advantages of this 

type are simplest construction and more multifarious. In the standard 

configuration, the arms/motors are symmetric around two axes. In the markets, all 

flight controllers can work with this UAV design, the most popular UAV design. 

And the disadvantages is in this type there is no redundancy, so if there is a failure 

anywhere in the system, especially in a motor or fan, the craft is likely going to 

crash. 

 

 

 

 

 

 

Figure 2.2 Quadcopter frame. 
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3. Hexacopter: In this type, UAV has six arms, each connected to one motor. The 

front of the UAV it can be between two arms, but can also be along one arm, as 

shown in Fig (2.3). From the advantages of this type, it increases the total thrust 

available, meaning the UAV can elevate more payload. Additionally, if a motor 

fails, there is still a chance the UAV can land rather than crash. Virtually all flight 

controllers support this configuration. And disadvantages is in this design extra 

components are utilized, so compared to a quadcopter which utilizes a minimum 

number of components, the equipollent hexacopter utilizing the same motors and 

fans would be more expensive and larger. These supplemental motors and 

components integrate weight to the UAV, so in order to get the same flight time 

as a quadcopter; the battery needs to be larger as well. 

 

 

 

 

 

 

Figure 2.3 Hexacopter frame. 

4. Octocopter: In octocopter design UAV has eight arms, each connected to one 

motor. The front of the UAV tends to be between any two neighbor arms, as 

shown in Fig (2.4). Advantages of this type is more thrust, as well as increased 

redundancy because of uses more motors. And disadvantages is more expensive 

and larger battery needed. 

 

 

 

 

 

Figure 2.4 Octocopter frame. 



16 
 

2.1.2 UAV Frame Size 

There are many different sizes of UAVs frames, from “Nano” which is smaller than your 

hand, to “Mega”, which can only be conveyed by the truck. For most users who are getting 

commenced in the field, a good size range which offers the most flexibility its size is 

between 350mm to 700mm. This measurement represents the diameter of the largest 

circle which intersects all of the motors [33]. 

In this thesis we used quadcopter frame with size 450mm, because of simplest 

construction, symmetric around two axis, uses a minimum number of parts, cheaper from 

other frames, low in weight and easy to find it in local markets. 

2.1.3 Motors 

A large effect on the payload (or maximum load) are in fact from the motors used which 

UAV can support, as well as the flight time. We vigorously suggest utilizing the same 

(propulsion) motor everywhere. Note that even if a pair of motors are the same brand and 

model, and from the same production run, their speeds may differ partially, which is the 

flight controller will take care of. Figure (2.4) show some types of motors. 

 

 

 

 

 

Figure 2.5 Some types of motors. 

 Brushed vs Brushless 

Brushed motors spin the coil inside a case with fine-tuned magnets mounted around the 

outside of the casing. Brushless motors do the antithesis; the coils are fine - tuned either 

to the outer casing or inside the casing while the magnets are spun. In most statuses, you 

will be considering only brushless DC motors. “Pancake” brushless motors have a more 

sizably voluminous diameter and are essentially flatter and often sanction for higher 

torque and lower KV (details in 2.1.3.3). More minute UAVs (conventionally the size of 

the palm of your hand) incline to utilize minuscule-brushed motors because of the lower 
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price and simpler two-wire controller. Albeit brushless motors come in a variety of 

different sizes and specs, culling a more minute brushless motor infrequently designates 

it will be less extravagant. Brushed DC motors have two connectors: one for positive, the 

other for negative. Inverting the wires reverses the rotation of the motor. Brushless DC 

motors have three connectors. Refer to the ESC section (2.1.5) to know how to wire them 

and invert the direction of rotation. 

 In runner vs Out runner 

There are a slight types of brushless DC motors: 

• Inrunner: These have the fine-tuned coils mounted to the outer casing and the 

magnets are mounted to the armature shaft which spins inside the casing (incline 

to be utilized on RC cars because of the high KV.  

• Outrunner: These have the magnets mounted on the outer casing, which is spun 

around the fine-tuned coils in the center of the motor casing (the bottom mounting 

of the motor is fine-tuned). 

• Hybrid outrunner: Technically outrunners but have a static outer shell around 

them to make them look homogeneous to their inrunners. 

Inrunner brushless DC motors incline to be utilized in airplanes and helicopters because 

of their high KV. They may additionally be geared down to increment the torque. 

Outrunners incline to have more torque. 

 KV 

KV it refers to the rpm constant of a motor, it is the number of rotation per minute that 

the motor will turn when 1V (one Volt) is applied with no load annexed to the motor. In 

summary, we call it revs per volt but do not cerebrate you will obtain those revs when 

you affix a fan; distinctly the revs will be reduced because of the load. KV is cognate to 

the potency out from a motor, or more usefully the torque level of a motor. It is tenacious 

by the number of winds on the armature (or turns as we sometimes call it) and the vigor 

of the magnets, there are so many variables with electric motors. So KV sanctions us to 

get a handle on the torque we can expect from a particular motor. The KV is rating/value 

of a motor relates to how expeditious it will rotate for a given voltage. For most multirotor 

aircraft, a low KV is required (between 500 to 1000 for example) since this avails with 

stability. For acrobatic flight however, you might consider a KV between 1000 and 1500 
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and withal consider utilizing more minute diameter fans. If the KV rating for a particular 

motor is 650rpm/V, then at 11.1V, the motor will be rotating at 11.1V x 650 = 7215rpm. 

If you operate the motor at a lower voltage (verbalize, 7.4V), the rpm will be 7.4V x 

650rpm/V = 4810rpm. It is consequential to note that utilizing a lower voltage inclines to 

designate that the current draw will be higher (power = current x voltage). 

 Thrust 

Some brushless motor manufacturers give a designation of a motor’s thrust corresponding 

to several propeller options (often presented in a table). The unit of thrust is often Kg, 

Lbs or N. For example, if you are building a quadcopter and find that a categorical motor 

can provide up to 0.5Kg of thrust with an 11 inch propeller, that signifies that four of 

these motors (with that given prop) can hoist 0.5Kg*4=2Kg at maximum thrust. Ergo if 

your quadcopter weighs just less than 2Kg, it will only take off at maximum thrust. You 

require to either cull a motor + propeller amalgamation which can provide more thrust, 

or reduce the weight of the aircraft. If the propulsion system (all motors and props) can 

provide 2Kg of thrust (max) then your entire copter should be at most about half this 

weight (1Kg, including the weight of the motors themselves). The same calculation can 

be done for any given configuration. 

2.1.4 Propeller (Fans) 

Propellers for multi-rotor aircraft are adapted from propellers used in RC airplanes. The 

material(s) used to make the propellers can have a moderate impact on the flight 

characteristics, but safety should be the primary consideration as shown in Fig (2.5). 

There are three types of propellers (plastic, Fiber-Reinforced Polymer, Natural such as 

wood). 

Figure 2.6 UAV Fan.  
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 Blades & Diameter 

Most multi-rotor aircraft have either two or three rotor blades, with the most mundane 

being two. Do not surmise that integrating more blades will automatically mean more 

thrust; each blade must peregrinate through the wake of the one, which precedes it, so the 

more blades, the more prevalent the wake will be. A more diminutive diameter propeller 

has less inertia and is ergo more facile to expedite and decelerate, which avails in 

acrobatic flight. 

 Pitch / Angle of Attack / Efficiency / Thrust 

The thrust engendered by a propeller depends on the density of the air, on the propeller’s 

RPM, on its diameter, on the shape and area of the blades and on its pitch. A propeller’s 

efficiency relates to the angle of assailant which is defined as the blade pitch minus the 

helix angle (the angle between the resultant relative velocity and the blade rotation 

direction). The efficiency itself is a ratio of the output power to the input puissance. Most 

well-designed propellers have an efficiency of 80%+. The relative velocity affects the 

angle of an assailant, so a propeller will have different efficiency at different motor 

speeds. The efficiency is additionally greatly affected by the leading edge of the propeller 

blade, and it is very consequential that it be as smooth as possible. Albeit a variable pitch 

design would be best, the integrated involution required as compared to a multirotor’s 

innate simplicity betokens a variable pitch propeller is virtually never utilized. 

 Rotation 

Propellers are either designed to rotate clockwise (CW) or counter-clockwise (CCW). It 

is consequential to know which component of the propeller is intended to face upwards 

(the top surface is curved outward). The top of the propeller should always face the sky. 

2.1.5 ESC (Electronic Speed Controller) 

An ESC (Electronic Speed Controller) is what sanctions the flight controller to control 

the haste and direction of a motor. The ESC must be able to handle the maximum current, 

which the motor might consume, and be able to provide it at the right voltage, Fig (2.6) 

shows an ESC. 
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Figure 2.7 an ESC. 

ESC Connectors:  

An ESC might initially be embarrassing because it has several wires exiting on two sides. 

 Power input: The two thick wires (normally black and red) are to obtain power 

from the power distribution board which itself receives power directly from the 

main battery. 

 3 black wires connectors: These pins are what connects to the three pins on the 

brushless motor. 

 3-pin R/C servo connector: This connector accepts RC signals, but rather than 

requiring 5V on the red and black pins, most of the time an internal BEC provides 

5V to power the electronics. 

BEC (Battery Elimination Circuit):  

Most ESCs include what is called a “Battery Elimination Circuit” or BEC. This emanates 

from the fact that historically, only one brushless motor was needed in a given RC vehicle, 

and rather than splitting the battery, it would just need to be connected to the ESC, and 

the ESC would have an onboard voltage regulator to power the electronics. It is 

consequential to know the current which an ESC’s BEC can provide, though it is normally 

in the range of 1A or above and is virtually always 5V.In a multi-rotor, you require to 

connect all ESCs to the flight controller, but only one BEC is needed, and having power 

emanating from multiple sources all being well fed to the same lines can potentially cause 

issues. Since there is normally no way to deactivate a BEC on an ESC, it is best to take 

off the red wire and wrap it with electrical tape for all but one ESC. It is still consequential 

to leave the black (ground) wire in place for “common ground”. 
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2.1.6 Battery 

Chemistry: Batteries utilized in UAVs are now virtually exclusively Lithium polymer 

(LiPo), with some more exotic ones being Lithium-Manganese or other Lithium 

variations. Lead acid is simply not an option and NiMh / NiCd are still too cumbersome 

for their capacity and often cannot provide the high discharge rates needed. LiPo offer 

high capacity with low weight, and high discharge rates. The downsides are their 

comparatively higher cost and persistent safety issues. 

Voltage: Actually, you should only need to consider one battery pack for your UAV. This 

battery’s voltage should correspond with the motors you opted for.  Virtually all batteries 

utilized these days are lithium-based and incorporate a number of 3.7V cells, where  

3.7V = 1S. Consequently, a battery which is marked as 4S is likely 4 x 3.7V = 14.8V 

nominal. Providing the number of cells, however, will help you to determine which 

charger to utilize. A single cell high capacity battery may physically look profoundly akin 

to a low capacity multi-cell battery. 

 

 

 

 

 

Figure 2.8 UAV Battery. 

2.1.7 Flight Controller 

A flight controller for a multi-rotor UAV is an integrated circuit customarily composed 

of a microprocessor, sensors and input / output pins. Out of the box, as shown in Fig (2.8), 

a flight controller does not magically ken your categorical UAV type or configuration, so 

set certain parameters in a software program are needed, and once consummate, that 

configuration is then uploaded to board. Rather than simply comparing flight controllers 

which are currently available. 
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Figure 2.9 Flight Controller. 

 Main Processor 

8051 vs AVR vs PIC vs ARM: These microcontroller families form the basis of most 

current flight controllers. Arduino is AVR based (ATmel) and the community seems to 

focus on MultiWii as being the preferred code. Microchip is the primary manufacturer of 

PIC chips. It is difficult to argue that one is better than the other, and it really comes down 

to what the software can do. ARM (STM32 for example) uses 16/32-bit architecture, 

whereas AVR and PIC tens to use 8 / 16-bit. As single board computers become less and 

less expensive, expect to see a new generation of flight controllers which can run full 

operating systems such as Linux or Android. 

CPU: Normally these are in multiples of 8 (8-bit, 16-bit, 32-bit, 64-bit) and is a reference 

to the size of the primary registers in a CPU. Microprocessors can only process a set 

(maximum) number of bits in memory at a time. The more bits a microcontroller can 

handle, the more accurate (and faster) the processing will be. For example processing a 

16-bit variable on an 8-bit processor is a bit of a chose, whereas on a 32-bit processor it 

is very fast. Note that the code also needs to work with the right number of bits. 

 

 

 

 

Figure 2.10 Main Processor in flight controller. 
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Operating frequency: The frequency at which the main processor operates. Frequency 

is measured in “Hertz” (cycles per second). This is also commonly referred to as the 

“clock rate”. The higher the operating frequency, the faster it can process data. 

Program Memory / Flash: The flash memory is essentially where the main code is stored. 

If the program is complex it may take up quite a bit of space. Obviously the greater the 

memory, the more information it can store. Memory is also useful when storing in-flight 

data such as GPS coordinates, flight plans, automated camera movement etc. The code 

loaded to the flash memory remains on the chip even if it power is cut. 

SRAM: SRAM stands for “Static Random-Access Memory”, and is the space on the chip 

which is used when making calculations. The data stored in RAM is lost when power is 

cut. The higher the RAM, the more information will be “readily available” for 

calculations at any given time. 

EEPROM: Electrically Erasable Programmable Read-Only Memory (EEPROM) is 

normally used to store information which does not change in flight, such as settings, 

unlike data stored in SRAM which can relate to sensor data etc. 

Additional I/O Pins: Most microcontrollers have a lot of digital and analog input and 

output pins, and on a flight controller, some are used by the sensors, others for 

communication and some may remain for general input and output. These additional pins 

can be connected to RC servos, gimbal systems, buzzers and more. 

A/D converter: Should the sensors used onboard output analog voltage (normally 0-3.3V 

or 0-5V), the analog to digital converter needs to translate these readings into digital data. 

Just like the CPU, the number of bits which can be processed by the A/D determines the 

maximum accuracy. Related to this is the frequency at which the microprocessor can read 

the data (number of times per second) to try to ensure no information is lost. It is 

nevertheless hard not to lose some data during this conversion, so the higher the A/D 

conversion, the more accurate the readings will be, but it is important that the processor 

can handle the rate at which the information is being sent. 

 Power 

Generally, there are two voltage ranges qualified in the spec sheet of a flight controller, 

the first being the voltage input range of the flight controller itself (most operate at 5V), 

and the second being the voltage input range of the main microprocessor’s logic (3.3V or 
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5V). Since the flight controller is an obviously integrated unit, and attention must be taken 

to the input range for the flight controller itself. Most UAV flight controllers operate at 

5V since that is the voltage provided by a BEC. 

 Sensors 

In terms of hardware, a flight controller is basically a normally programmable 

microcontroller but has specific sensors onboard. At a minimum, a flight controller will 

have a three-axis gyroscope, but as such will not be able to auto-level. Not all flight 

controllers will have all of the sensors below and maybe include a combination of there. 

The sensors: 

1. Accelerometer: Is measure linear acceleration in up to three axes (let’s call them 

X, Y and Z), Fig (2.10) shows the accelerometer axis’s. The units are in “gravity” 

(g) which is 9.81 meters per second per second, or 32 feet per second per second. 

The output of an accelerometer can be integrated twice to give a position, though 

because of losses in the output, it is subject to “drift”. A very important 

characteristic of three axis accelerometers is that they detect gravity, and as such, 

can know which direction is “down”. This plays a major role in allowing 

multirotor aircraft to stay stable. The accelerometer should be mounted to the 

flight controller so that the linear axes line up with the main axes of the UAV. 

 

 

 

 

 

 

 

Figure 2.11 Accelerometer. 
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2. Gyroscope: A gyroscope measures the rate of angular change in up to three 

angular axes (let’s call them alpha, beta and gamma), Fig (2.11) shows the 

gyroscope angular axis’s.  The units are often degrees per second. Note that a 

gyroscope does not measure absolute angles directly, but we can iterate to get the 

angle which, just like an accelerometer, is subject to drift. The output of the actual 

gyroscope tends to be analog or I2C, but in most cases you do not need to worry 

about it since this is handled by the flight controller‘s code. The gyroscope should 

be mounted so that its rotational axes line up with the axes of the UAV. 

 

 

 

 

 

 

Figure 2.12 The Gyroscope Angular Axis’s 

3. Inertia Measurement Unit (IMU): An IMU is essentially a small board which 

contains both an accelerometer and gyroscope (normally these are multi-axis), as 

shown in Fig (2.12). Most contain a three axis accelerometer and a three-axis 

gyroscope, and others may contain additional sensors such as a three axis 

magnetometer, providing a total of 9 axes of measurement. 

 

 

 

 

 

 

Figure 2.13 Inertia Measurement Unit (IMU). 
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4. Compass / Magnetometer: An electronic magnetic compass is able to measure 

the earth’s magnetic field and used it to determine the UAV‘s compass direction 

(with respect to magnetic north), Fig (2.13) shows Magnetometer. This sensor is 

almost always present if the system has GPS input and is available in one to three 

axes. 

 

 

 

 

 

Figure 2.14 Magnetometer. 

 

5. Pressure / Barometer: Since atmospheric pressure changes according to the 

altitude from sea level, a pressure sensor can be used to give you an accurate 

reading of the UAV’s height. Most flight controllers take input from both the 

pressure sensor and GPS altitude to calculate a more accurate height above sea 

level. Note that it is better to have the barometer covered with a piece of foam to 

minimize the effects of wind over the chip. 

6. GPS: Global Positioning Systems (GPS) use the signals sent by a number of 

satellites in orbit around the earth in order to determine their specific geographic 

location. A flight controller can either have onboard GPS or one which is 

connected to it via a cable. The GPS antenna should not be confused with the GPS 

chip itself, and can look like a small black box or a normal “duck” antenna. In 

order to get an accurate GPS lock, the GPS chip should receive data from multiple 

satellites, and the more the better. 

7. Distance: Distance sensors are being used more and more on drones since GPS 

coordinates and pressure sensors alone cannot tell you how far away from the 

ground you are (think hill, mountain or building) or if you will hit an object. The 

distance of downward-facing sensor is based on ultrasonic, laser or lidar 

technology (infrared has issues in sunlight). Slight flight controllers include 

distance sensors as part of the standard package. 
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 Raspberry Pi 

The first model (Raspberry Pi 1 Model B) was produced in 2012. Then it was followed 

by another model, it was simple and cheap in comparing to the previous Model A. In 

early 2014, the Foundation produced another board with more improved design, which is 

Model B+. the main advantage of these boards is that they approximately credit-card sized 

, another generation is  A+ and B+ models were produced in one year later. After that, 

another Module was produced in early 2014 and it is used for embedded applications. A 

new generation Raspberry Pi 2 produced in early 2015 added more RAM for it. 

 In early 2017, Raspberry Pi 3 Model B was introduced as the newest version of Raspberry 

Pi.  

All models includes an on-chip graphics processing unit (GPU, a Video Core IV), ARM 

compatible central processing unit (CPU) and CPU speed starts from 700 MHz and ends 

at 1.2 GHz for the Pi 3 and on board memory starts from 256 MB and ends at 1 GB RAM. 

A Digital (SD) cards are used to store the program memory and operating system in Micro 

SDHC sizes. Most boards have one or more (four) USB slots, composite video output, 

HDMI, and a 3.5 mm jack for audio output or input. A number of GPIO pins provide 

Lower level output, which supports common used protocols like I²C. The B-models have 

an Ethernet port and the Pi 3 has an on board Wi-Fi 802.11n and Bluetooth. 

The Raspberry Pi hardware can be summarized in the following diagram: 

 

 

 

 

 

 

Figure 2.15 Raspberry Pi Hardware Components and B+ Model. 

2.2.1 Processor 

The main processor of raspberry pi 3 is a 64-bit quad-core  ARM Cortex-A53 with 1.2 

GHz a Broadcom BCM2837 SoC. 



28 
 

2.2.2 Performance 

The Raspberry Pi 3, using a quad-core Cortex-A53 processor performance is 10 times the 

performance of a Raspberry Pi 1.[33]  Benchmarks showed that Raspberry Pi 3 is 

approximately 80% faster than the Raspberry Pi 2 in parallelized applications.[34] 

Raspberry Pi 2 includes a 1 GB RAM quad-core Cortex-A7 CPU,900 MHz. It the 

Benchmarks showed that it is 4–6 times more efficient than its previous processor. its 

GPU is the same as the original.[35]  In parallelized benchmarks, the Raspberry Pi 2 is 

said to be up to 14 times faster than its previous model.[36] 

2.2.3 RAM 

On the older beta Model B boards, 128 MB was allocated by default to the GPU, leaving 

128 MB for the CPU. [37] On the first 256 MB release Model B (and Model A), three 

different splits were possible. The default split was 192 MB (RAM for CPU), which 

should be enough for standalone 1080p video decoding, or for simple 3D, but probably 

not for both together. 224 MB was for Linux only, with only a 1080p framebuffer, and 

was likely to fail for any video or 3D. 128 MB was for heavy 3D, possibly also with video 

decoding (e.g. XBMC). [38] Comparatively the Nokia 701 uses 128 MB for the 

Broadcom VideoCore IV. [39] 

For the later Model B with 512 MB RAM initially there were new standard memory split 

files released( arm256_start.elf, arm384_start.elf, arm496_start.elf) for 256 MB, 384 MB 

and 496 MB CPU RAM (and 256 MB, 128 MB and 16 MB video RAM). But a week or 

so later the RPF released a new version of start.elf that could read a new entry in config.txt 

(gpu_mem=xx) and could dynamically assign an amount of RAM (from 16 to 256 MB in 

8 MB steps) to the GPU, so the older method of memory splits became obsolete, and a 

single start.elf worked the same for 256 and 512 MB Raspberry Pis.[40] 

The Raspberry Pi 2 and the Raspberry Pi 3 have 1 GB of RAM.[41][42] The Raspberry 

Pi Zero and Zero W have 512 MB of RAM. 
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2.2.4 Peripherals 

 

 

 

 

 

Figure 2.16 Raspberry Pi 3. 

For connecting peripherals the current Model B boards uses four USB ports. Raspberry 

Pi can be operated with generic USB computer keyboard or mouse. [43] It can also be 

used with USB to MIDI converters, USB storage, and any other devices with USB 

capabilities. Other devices can be connected through the various pins and connectors on 

the Raspberry Pi.[44] 

2.2.5 Real-time clock 

The available Raspberry Pi models do not have a real-time clock, so they are cannot keep 

tracking the time of the day independently. Some methods can be used to overcome this 

problem such as, some programs running on the Pi may have the ability to retrieve the 

time from a network time server or from the user at boot time, thus knowing the time 

while powered on.  

To insure correct real-time tracking A real-time hardware clock with battery backup, such 

as the DS1307, which is binary coded, could be added to the system. Raspberry Pi 1 

Models A+ and B+, Pi 2 Model B, Pi 3 Model B and Pi Zero (and Zero W) GPIO J8 have 

a 40-pin pinout.[45][46] 
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Table 2.1 Raspberry Pi pinout. 

GPIO# 2nd func. Pin# Pin# 2nd func. GPIO# 

 +3.3 V 1 2 +5 V  

2 SDA1 (I²C) 3 4 +5 V  

3 SCL1 (I²C) 5 6 GND  

4 GCLK 7 8 TXD0 (UART) 14 

 GND 9 10 RXD0 (UART) 15 

17 GEN0 11 12 GEN1 18 

27 GEN2 13 14 GND  

22 GEN3 15 16 GEN4 23 

 +3.3 V 17 18 GEN5 24 

10 MOSI (SPI) 19 20 GND  

9 MISO (SPI) 21 22 GEN6 25 

11 SCLK (SPI) 23 24 CE0_N (SPI) 8 

 GND 25 26 CE1_N (SPI) 7 

(Pi 1 Models A and B stop here) 

EEPROM ID_SD 27 28 ID_SC EEPROM 

5 N/A 29 30 GND  

6 N/A 31 32  12 

13 N/A 33 34 GND  

19 N/A 35 36 N/A 16 

26 N/A 37 38 Digital IN 20 

 GND 39 40 Digital OUT 21 
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Model B rev. 2 also has a pad (called P5 on the board and P6 on the schematics) of 8 pins 

offering access to an additional 4 GPIO connections. [47] 

Table 2.2 Model B additional 4 GPIO connections. 

Function 2nd func. Pin# Pin# 2nd func. Function 

N/A +5 V 1 2 +3.3 V N/A 

GPIO28 GPIO_GEN7 3 4 GPIO_GEN8 GPIO29 

GPIO30 GPIO_GEN9 5 6 GPIO_GEN10 GPIO31 

N/A GND 7 8 GND N/A 

 

Models A and B provide GPIO access to the ACT status LED using GPIO 16. Models 

A+ and B+ provide GPIO access to the ACT status LED using GPIO 47, and the power 

status LED using GPIO 35. 

2.2.6 Operating systems 

 

 

 

 

 

Figure 2.17 Back view of Raspberry Pi 3 shows MicroSD. 

 

The operating system on raspberry pi can be installed on MicroSD card, we can see from 

figure (2.16) above the MicroSD slot on the bottom of raspberry pi 2 or 3 board. 

The most recommended operating system for raspberry pi by its foundation are Raspbian, 

a Debian-based Linux operating system. Also a third party operating systems such as 

include Ubuntu MATE, Snappy Ubuntu Core, Windows 10 IoT Core, RISC OS are 

available for raspberry pi2 and 3. Many other operating systems can also run on the 

Raspberry Pi. 
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 Arduino 

Arduino is an open-source hardware. Layout and production files for all versions of the 

hardware are available in company website. The source code for the IDE is released. 

 

 

 

 

 

Figure 2.18 RS-232 serial interface. 

An early Arduino board[18] started with an RS-232 serial interface as shown in the figure 

(2.17) above. Using an Atmel ATmega8 microcontroller chip (the black chip in the lower 

left side in figure above); at the top the 14 digital I/O pins are located, at the lower right 

the 6 analog input pins are located, and the power connector at the lower left in the figure 

above. 

Arduino microcontrollers can be programmed with a boot loader that simplify the process 

of uploading programs to the on-chip flash memory. Boards are programed with the code 

via a serial connection to a computer. In Some Arduino boards there are a level shifter 

circuit to convert between RS-232 logic levels and (TTL) level signals. The Current 

Arduino boards now days are programmed using  (USB), the connection between arduino 

and computer is made using cable, in some cases standard AVR in-system programming 

(ISP) programming is used. 

 

 

 

 

 

Figure 2.19 Arduino Uno. 

An official Arduino Uno R2 with descriptions of the I/O locations 
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The Arduino Uno[c] board provides 14 digital I/O pins, six of them can produce pulse-

width modulated signals, and it has six analog inputs, also it can be used as six digital I/O 

pins. These pins are located on the top of the board, via female 0.1-inch (2.54 mm) 

headers.  

A program for Arduino is written in any programming language for a compiler that 

produces binary machine code for the target processor. Atmel provides a development 

environment for their microcontrollers, AVR Studio and the newer Atmel Studio. 

[48][49][50] 

The Arduino project provides the Arduino integrated development environment (IDE), 

which is a cross-platform application written in the programming language Java. It 

originated from the IDE for the languages Processing and Wiring. It includes a code editor 

with features such as text cutting and pasting, searching and replacing text, automatic 

indenting, brace matching, and syntax highlighting, and provides simple one-click 

mechanisms to compile and upload programs to an Arduino board. It also contains a 

message area, a text console, a toolbar with buttons for common functions and a hierarchy 

of operation menus. 

A program written with the IDE for Arduino is called a sketch. [51] Sketches are saved 

on the development computer as text files with the file extension .ino. Arduino Software 

(IDE) pre-1.0 saved sketches with the extension .pde. 

Using specific rules of code structuring Arduino IDE supports the languages C and C++. 

The Arduino IDE supplying a software library from the Wiring project, which provides a 

lot of input and output procedures. User-written code only requires two basic functions, 

for starting the sketch and the main program loop, that are compiled and linked with a 

program stub main() into an executable cyclic executive program with the GNU 

toolchain, also included with the IDE distribution. The Arduino IDE employs the program 

avrdude to convert the executable code into a text file in the hexadecimal encoding that 

is uploaded into the Arduino board by an uploader program in the board's firmware. There 

are many free public libraries for developers to use to boost their projects. 
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CHAPTER 3 

ASSEMBLY AND PROCEDURE 

 

 UAV chosen components 

According to the information given in the previous chapter (2), in this thesis we have 

chosen F450 Quadcopter frame with 1400KV brushless motors, EMAX ESC 30A, KK2 

Flight controller, RC remote control 6 channels and polycarbonate propellers. 

 UAV Assembly 

In F450 frame we get 4 arms and two boards as shown in Fig (3.1). 

 

Figure 3.1 F450 UAV Frame Used. 
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Lower board is printed board (Power Distributed Board (PDB)) and we connect the main 

input power from battery to the PDB and connect all ESC’s to the PDB too. The PDB 

have 4 connectors as an output and we connect it to the 4 ESC’s and we connected the 

input to the battery, the PDB used mostly to split the main battery to each of the ESCs. 

The voltage is supplied to the ESCs at the same level, so there is no need to increase it 

(step up) or decrease it (step down) as shown in Fig (3.2) and Fig (3.3). 

 

Figure 3.2 Power Distribution Board to Battery. 

Figure 3.3 Motor to ESC (with BEC) to Power Distributed Board. 

After attaching the motors on the frame body, we connect it to the ESCs, each motor to 

its related ESC. The direction of motor is important for that reason every two opposite 

motors are in the same direction and the other two in the reverse direction [52], we have 
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two direction clockwise (CW) and counter-clockwise (CCW). For the CW direction, the 

connection between motor and ESC is direct connect that mean left side from motor goes 

to left side from the ESC, the middle from the motor goes to the middle from the ESC 

and right side from the motor goes to the right side from the ESC. For the CCW direction, 

the connection between motor and ESC is in revers attach that mean left side from motor 

side goes to right side from the ESC, middle side from the motor goes to the middle side 

from the ESC, and right side from the motor goes to left side from the ESC as shown in 

fig (3.4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 Connection types between motor and ESC. 

If the motors are all in the same direction and due to Newton’s third low of motion “for 

every action, there is an equal and opposite reaction.” As of it, the body of the 

quadcopter will tend to spin in the opposite directional to the motors. Therefore, the 

direction of all motors must be as in Fig (3.5). 
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Figure 3.5 direction of UAV motors. 

In our UAV we used An EMAX ESC (Electronic Speed Controller) as shown in Fig (3.6) 

below. 

 

 

 

 

 

Figure 3.6 EMAX ESC 30 A. 

The 3 pins servo connectors goes to flight controller, these wires goes to flight controller 

and receives the PWM (Pulse Width Modulation) from flight controller to control the 

rotational speed of the motor. 
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 Pulse Width Modulation (PWM) 

PWM is a technique uses digital circuits to control analog circuits, by generating analog 

signals from digital devices. PWM used in a wide variety of applications, 

measurements, communications, conversion and power controls.  

Analog systems used to generate a lot of heat because they are basically variable resistors 

carrying a lot of currents. While digital systems do not generate much of heat, 

approximately all the generated heat by a switching device is during the transition, while 

the device is neither on nor off, but in between. This is because power follow the 

following formula: 

ࡼ ൌ 	ࡱ ൈ ࢙࢚࢚ࢇࢃ   Or   ࡵ ൌ 	ࢋࢍࢇ࢚࢒࢕ࢂ ൈ  (3.1)                                        ࢚࢔ࢋ࢛࢘࢘࡯

If any of voltage or current is near zero then the power will be near zero too, PWM takes 

advantage of this fact. A PWM signal can defined its behavior by two main components 

duty cycle, and frequency. The PWM waveform are shown in Fig (3.7) below. 

Figure 3.7 A PWM Waveform. 

The duty cycle describes the time of signal in high (ON) status as a percentage of a total 

time of it takes to complete one cycle. One period pulse consist of time ON and time OFF, 

Fig (3.8) illustrate pulse timing. The frequency describes how fast the PWM complete a 

cycle (i.e. 500 Hz would be 500 cycles per second). 
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Figure 3.8 Period pulse timing. 

The duty cycle can be calculated from the following formulas: 

ࢋ࢒ࢉ࢟࡯	࢚࢛࢟ࡰ ൌ 	 ࢔ࡻ࢚
ࢀ

                                                                                                    (3.2)  

Where T: is the total time (ton + toff). 

Or 

ࢋ࢒ࢉ࢟࡯	࢚࢛࢟ࡰ ൌ ሻࢉࢋࡿ	࢔࢏ሺ	ࡹࢃࡼ ൈ ሻࢠࡴ	࢔࢏ሺ	࢟ࢉ࢔ࢋ࢛ࢗࢋ࢘ࡲ ൈ ૚૙૙                            (3.3) 

Fig (3.9) shown below are examples of a 0%, 25%, 50%, 75% and 100% duty cycle. 

While the frequency is the same for each. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9 Examples of duty cycle. 
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 Installing and connecting Flight Controller  

Flight controller is the most important component in the UAV, it must be in the center of 

the frame (center of gravity) and with the same level of motors, in addition to its direction. 

Stability and controlling UAV is from flight controller responsibilities.  

Controlling the motion of the Quadcopter (UAV) is by three main things, the Yaw 

(Rudder), Pitch (Elevator) and Roll (Ailerons), in addition to the Throttle, which is the 

distance from ground level. 

3.4.1 Yaw (Rudder)  

It is the rotating / deviation of the quadcopter (UAV) to right or to left, by rotating around 

the virtual axis Z. As shown in Fig (3.10) below. 

Figure 3.10 Yaw axis. 

3.4.2 Pitch (Elevator)  

It is moved the UAV to the front or to the back, by rotating around the virtual axis Y. as 

shown in Fig (3.11).  
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Figure 3.11 Pitch axis. 

3.4.3 Roll (Ailerons)  

It moves the UAV to the sideward either to right or to left, by rotating around the virtual 

axis X. As shown in Fig (3.12) below. Many people are confusing between Yaw and Roll, 

Yaw is change the direction of the UAV fly but Roll is move the UAV to right or left. 

Figure 3.12 Roll axis. 

3.4.4 Center of Gravity (CG)  

Is the effective point where all axes of flight (Roll, Pitch and Yaw) meet on it, also all 

weight is considered to be, Fig (3.13) shows the CG of UAV. CG point does not change 

in any aircraft but some times moves forward or backward along the longitudinal axis, 

depending on how the aircraft is loaded. 
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Figure 3.13 Center of Gravity of UAV. 

3.4.5 PID  

It is fundamentally a method utilized in programming and if made settings properly, can 

be incredibly effective and delicate. PID stands for Proportional Integral Derivative, three 

separate components joined together, though sometimes we do not require all three. For 

example, we could instead have just P control, PI control, PD control or PID control. 

Many flight controller software allow users to adjust PID values to get better performance 

of flight. PID is a function in the flight controller; it reads data from the sensors and 

inform the motors how fast they need to run. Finally, this is how the stability is obtained 

on UAV.  

Proportional-Integral-Derivative (PID) is a closed loop control system that effort to get 

the actual result near or closer to the required result by regulating the input. The error is 

fed back to the beginning, and repeats the process, as shown in Fig (3.14) below. 
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Figure 3.14 PID controller diagram. 

UAV control is a mainly difficult and interesting problem. With six degrees of freedom 

in which three are translational and three are rotational and only four autonomous inputs 

which are rotor speeds, UAVs are severely underactuated. To achieve six degrees of 

freedom rotational and translational motion are mixed. The produced dynamics are highly 

nonlinear, particularly after accounting for the complicated aerodynamic effects. Finally, 

unlike ground vehicles, UAVs have very little friction to restrain their motion, so they 

must furnish their own damping in order to stop moving and stay stable. Simultaneously, 

these factors create a very motivating control problem. 

 UAV Dynamics  

We will commence deriving UAV dynamics by introducing the two frames in which will 

operate. The inertial frame is defined by the ground, with gravity pointing in the negative 

z-direction. The body frame is defined by the orientation of the UAV, with the rotor axes 

pointing in the positive Z-direction and the arms pointing in the X and Y directions. Fig 

(3.15) shows the UAV body frame and inertial frame. 
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Figure 3.15 UAV Body frame and Inertial frame. 

 Kinematics  

Let us formalize the kinematics in the body and inertial frames before delving into the 

physics of UAV motion. Position and velocity of UAV defined in the inertial frame  

as ݊݋݅ݐ݅ݏ݋݌ ൌ 	 ሺݔ, ,ݕ ݕݐ݅ܿ݋݈݁ ሻ்andݖ ൌ 	 ሺݔ,ሶ ሶ,ݕ  ሶሻ் . Similarly, the Yaw, Roll, and Pitchݖ

angles in the body frame was defined as ߠ ൌ 	 ሺϕ, ,ߠ ߰ሻ், with identical angular velocity 

as ߠሶ ൌ 	 ൫ϕሶ , ሶߠ , ሶ߰ ൯
்
. However, with the consideration that the angular velocity vector ߱ 	 ്

ሶߠ	 . The angular velocity is a vector pointed along the rotational axis, while ߠሶ  is the time 

derivative of Roll, Yaw and Pitch. To convert these angular velocities into angular 

velocity vector, we can utilize the following relation:  

߱ ൌ	 ቎
1 0 െܵఏ
0 மܥ ఏܵமܥ
0 െܵம மܥఏܥ

቏ ሶߠ                                                                                             (3.4) 

Where  

߱ is the angular velocity vector in the body frame.  

The body frame can related with inertial frame by a rotation matrix R that goes from the 

body frame to the inertial frame. This matrix is determined by utilizing the ZYZ Euler 

angle conventions and successively “undoing” the Pitch, Roll and Yaw.  
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ܴ ൌ 	 ቎

టܥథܥ െ ఏܵథܵటܥ െܥటܵథ െ ఏܵటܥథܥ ܵఏܵట
ఏܵటܵథܥ ൅ థܵటܥ టܥఏܥథܥ െ ܵథܵట െܥటܵఏ

ܵథܵఏ థܵఏܥ ఏܥ
቏                                             (3.5) 

 

For a given vector ݒԦ in the body frame, the identical vector is given by ܴݒԦ in the inertial 

frame. 

 Physics  

In order to fairly model the dynamics of the system, an understanding of the physical 

properties that govern it is needed. We will start with detailing of the motors being utilized 

for our UAV, and then use energy considerations to drive the forces and thrusts that these 

motors produced in the entire UAV. All motors on the UAV are indistinguishable, so we 

can investigate a single one without loss of generality. 

 Motors  

All UAV applications are used brushless motors. The torque produced for our electric 

motors is given by:  

߬ ൌ ܫ௧ሺܭ	 െ	ܫ଴ሻ                                                                                                    (3.6) 

Where  

߬ : the motor torque.  

I : Input current. 

  .଴ : The current when there is no load in the motorܫ

 .௧ : The torque relativity constantܭ

The voltage across the motor is the sum of the some resistive loss and the back-EMF: 

 

ܸ ൌ 	 ௠ܴܫ ൅	ܭ௩߱                                                                                                (3.7) 
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Where  

V: the voltage drop across the motor.  

ܴ௠ : the motor resistance.  

߱ : the angular velocity of the motor.  

 .௩ : a proportionality constant (indicating back-EMF generated per RPM)ܭ

The following description can be used to calculate the power consumes of our motors. 

The power is:  

 

ܲ ൌ ܸܫ ൌ 	
ሺఛା௄೟ூబሻሺ௄೟ூబோ೘ାఛோ೘ା௄೟௄ೡఠሻ

௄೟
మ                                                           (3.8) 

Assuming negligible motor resistance. Then, the power becomes proportionate to the 

angular velocity: 

 

ܲ	 ൎ 	
ሺఛା௄೟ூబሻ௄ೡఠ

௄೟
                                                                                                    (3.9) 

 

For further simplification, assuming that ܭ௧ܫ଴ ≪ ߬. Since I0 is the current when there is 

no load, even that is too small. This approximation is good enough. Thus, the final 

simplified equation for power is:  

 

ܲ	 ൎ 	
௄ೡ
௄೟
߬߱                                                                                                              (3.10) 

 

 

 

 



47 
 

 Forces  

By keeping of energy, we realize that the energy of the motor consumes in a given 

duration is equal to the force generated on the propeller times the distance that the air it 

displaces moves ሺܲ. ݐ݀ ൌ .ܨ  ሻ. Equivalently, the power equals to the thrust times theݔ݀

air velocity ቀܲ ൌ 	
ௗ௫

ௗ௧
ቁ. 

 

ܲ	 ൌ 	Τݒ௛                                                                                                                (3.11) 

 

Assuming low vehicle speed, so vh is the air velocity when flight. And also assuming that 

the free stream velocity, v∞, is zero (the air in the surrounding environment is stationary 

proportional to the UAV). Momentum theory gives us the equation for flight velocity as 

a function of thrust.  

 

௛ݒ ൌ 	ට
஋

ଶఘ஺
                                                                                                             (3.12) 

Where  

  .the density of the surrounding air : ߩ

A : the area swept out by the rotor.  

By using simplified equation of power:  

 

ܲ ൌ 	
௄ೡ
௄೟
߬߱ ൌ 	

௄ೡ௄ഓ
௄೟

Τ߱ ൌ 	
஋
య
మ

ඥଶఘ஺
	                                                                        (3.13) 

 

In the general case, ߬ ൌ Ԧݎ ൈ  Ԧ; in this case, the torque is relative to the thrust T by someܨ

constant ratio ܭఛ determined by the code configuration and parameters. For solving the 

thrust magnitude T, thrust is proportional to the square of angular velocity of the motor 

obtained:  
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Τ ൌ 	൬
௄ೡ௄ഓඥଶఘ஺

௄೟
	߱൰

ଶ

ൌ ݇߱ଶ                                                                              (3.14) 

 

Where k is some fitly dimensioned constant. Summing over all motors, we find that the 

total thrust on the UAV (in the body frame) is given by:  

 

Τ஻ ൌ 	∑ Τ௜
ସ
௜ୀଵ ൌ ݇	 ൥

0
0

∑߱௜
ଶ
൩                                                                                (3.15) 

 Torques  

Since we have processed the powers on the UAV, we might like to figure the torques. 

Every rotor contributes some torque about the body Z-axis. This torque is the torque 

required to keep propeller turning and providing thrust; it makes the immediate angular 

acceleration and defeats the frictional drag forces. From fluid dynamics the drag equation 

gives us the frictional force:  

஽ܨ ൌ 	
ଵ

ଶ
 ଶ                                                                                                   (3.16)ݒܣ஽ܥߩ	

Where  

  .the surrounding fluid density :ߩ

A: the reference area (propeller cross-section, not area swept out by the propeller).  

  .஽: dimensionless constantܥ

This, while just exact in some at times, is good enough for our motivations. This infers 

the torque because of drag is given by:  

 

߬஽ ൌ 	
ଵ

ଶ
ܴఘܥ஽ݒܣଶ ൌ 	

ଵ

ଶ
ܴఘܥ஽ܣሺܴ߱ሻଶ ൌ ܾ߱ଶ                                               (3.17) 

Where  

߱: the angular velocity of the propeller.  

R: the radius of the propeller.  
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ܾ: some appropriately dimensioned constant.  

Note that we’ve expected that all the force is applied at the tip of the propeller, which is 

certainly inaccurate; in any case, the main outcome that issues for our motivations is that 

the drag torque is corresponding to the square of the angular velocity. We would then be 

able to compose the entire torque about the Z-axis for the ith motor:  

߬௭ ൌ ܾ߱ଶ ൅ ெܫ ሶ߱                                                                                                   (3.18) 

Where  

  .ெ : the moment of inertia about the motor Z-axisܫ

ሶ߱  : the angular acceleration of the propeller.   

ܾ : drag coefficient.  

Note that in stable status flight (not landing or taking off) ߱ ൎ 0ሶ , since most of the time 

the propellers will be preserving a constant (or nearly constant) thrust and won’t be 

accelerating. Thus, simplifying the entire expression to:  

߬௭ ൌ 	 ሺെ1ሻ௜ାଵܾ߱௜
ଶ                                                                                               (3.19) 

Where the ሺെ1ሻ௜ାଵ negative for the ith propeller if they spinning CCW and positive if its 

spinning CW. The sum of all the torques from each propeller gives us the total torque 

about the Z-axis.  

߬ట ൌ ܾሺ߱ଵ
ଶ െ ߱ଶ

ଶ ൅ ߱ଷ
ଶ െ ߱ସ

ଶሻ                                                                         (3.20) 

From standard mechanics, the Pitch and Roll torques are derived. The i =1 and i =3 motors 

arbitrarily chosen to be on the Roll axis, so  

߬థ ൌ 	∑ ݎ ൈ Τ ൌ ሺ݇߱ଵܮ
ଶ െ ݇߱ଷ

ଶሻ ൌ ሺ߱ଵ݇ܮ
ଶ െ ߱ଷ

ଵሻ                                     (3.21) 

Correspondingly, a similar expression gives the Pitch torque:  

߬ఏ ൌ ሺ߱ଶ݇ܮ
ଶ െ ߱ସ

ଶሻ                                                                                             (3.22) 

Where  

L: the distance from the center of the UAV to any of the propellers. So, the torques in the 

body frame are:  
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߬஻ ൌ 	 ቎
ሺ߱ଵ݇ܮ

ଶ െ ߱ଷ
ଶሻ

ሺ߱ଶ݇ܮ
ଶ െ ߱ସ

ଶሻ
ܾሺ߱ଵ

ଶ െ ߱ଶ
ଶ ൅ ߱ଷ

ଶ െ ߱ସ
ଶሻ
቏                                                                     (3.23) 

 Equations of Motion  

The acceleration of the UAV is due to thrust, gravity, and linear friction in the inertial 

frame. The thrust vector in the inertial frame can be obtained by using the rotational 

matrix R to map the thrust vector from the body frame to the inertial frame. So, linear 

motion can summarized as:  

ሷݔ݉ ൌ ൥
0
0

െ݉݃
൩ ൅ ܴΤ஻ ൅  ஽                                                                               (3.24)ܨ

Where  

  .Ԧ: the position of the UAVݔ

g: the acceleration due to gravity.  

  .஽: the drag forceܨ

Τ஻: the thrust vector in the body frame.  

While it is advantageous to have the linear equations of motion in the inertial frame, the 

rotational equations of motion are helpful to us in the body frame, so we can express 

rotations about the center of the UAV rather than about our inertial center. We determined 

the rotational equations of movement from Euler's equations for inflexible body 

dynamics. Expressed in vector form, Euler's  

Equations are written as:  

 

ܫ ሶ߱ ൅ 	߱	 ൈ	ሺ߱ܫሻ ൌ 	߬                                                                                        (3.25) 

Where  

߱ : the angular velocity vector.  

I : the inertia matrix.  

߬ : vector of external torques.  
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We can rewrite this as :  

ሶ߱ ൌ 	 ቎
ሶ߱ ௫
ሶ߱ ௬
ሶ߱ ௭
቏ ൌ 	 ଵ൫߬ିܫ െ ߱ ൈ ሺ߱ܫሻ൯                                                                   (3.26) 

We can show our UAV as two thin uniform rods crossed at the source with a point mass 

(motor) at the end of each. In view of this present, obviously, the symmetries result in a 

diagonal inertia matrix of the frame 

ܫ ൌ 	 ቎
௫௫ܫ 0 0
0 ௬௬ܫ 0
0 0 ௭௭ܫ

቏                                                                                           (3.27) 

Thus, we obtain our last result for the body frame rotational equations of movement  

ሶ߱ ൌ 	 ቎

௫௫ିଵܫ∅߬

߬ఏܫ௬௬ିଵ

߬టܫ௭௭ିଵ
቏ െ

ۏ
ێ
ێ
ێ
ۍ
ூ೤೤ିூ೥೥
ூೣೣ

߱௬߱௭
ூ೥೥ିூೣೣ
ூ೤೤

߱௫߱௭
ூೣೣିூ೤೤
ூ೥೥

߱௫߱௬ے
ۑ
ۑ
ۑ
ې

                                                                        (3.28) 

 

 Control  

The motivation behind deriving a numerical model of a UAV is to help with creating 

controllers for physical UAVs. The inputs to our framework comprise of the angular 

velocities of every rotor since everything we can control is the voltages over the motors. 

Note that we just utilized the square of the angular velocity, ߱௜
ଶ and never the angular 

velocity itself, ߱௜. For notational effortlessness, let us present the inputs ߛ௜ ൌ ߱௜
ଶ. Since 

we can set ߱௜ we can obviously set ߛ௜ also. With this, we can compose our system as a 

first order differential equation in state space. Suppose ݔଵ be the position in space of the 

UAV, ݔଶ be the UAV linear velocity, ݔଷ be the Roll, Pitch, and Yaw angles, and ݔସ be 

the angular velocity vector. (al of these are 3-vectors.) With these being our state, we can 

compose the state space equations for the development of our state.  
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ሶଵݔ ൌ  ଶ                                                                                                                    (3.29)ݔ

ሶଶݔ ൌ 	 ൥
0
0
െ݃

൩ ൅ ଵ

௠
ܴΤ஻ ൅

ଵ

௠
 ஽                                                                                 (3.30)ܨ

ሶଷݔ ൌ 	 ቎
1 0 െܵఏ
0 థܥ ఏܵథܥ
0 െܵథ థܥఏܥ

቏

ିଵ

 ସ                                                                               (3.31)ݔ

ሶସݔ ൌ 	 ቎

௫௫ିଵܫ∅߬

߬ఏܫ௬௬ିଵ

߬టܫ௭௭ିଵ
቏ െ

ۏ
ێ
ێ
ێ
ۍ
ூ೤೤ିூ೥೥
ூೣೣ

߱௬߱௭
ூ೥೥ିூೣೣ
ூ೤೤

߱௫߱௭
ூೣೣିூ೤೤
ூ೥೥

߱௫߱௬ے
ۑ
ۑ
ۑ
ې

                                                                            (3.32) 

 PD Control  

In order to control UAV, we will utilize a PD control, with a component proportional to 

the error between our coveted path and the observed path, and a component proportional 

to the derivative of error. Because our UAV only have a gyro, so we only be able to utilize 

the angle derivatives ߶ሶ ሶߠ , , and ሶ߰  in our controller; the measured values gives us the 

derivative of error, and their integral provides us the actual error. We might want to 

stabilize the UAV in a level position (horizontal), so our desired velocity and angles will 

all be zero. Torques are associated to angular velocities by ߬ ൌ ሷߠܫ , so we might want to 

set the torques proportional to the output of controller, with 

߬ ൌ   ,ሻ. Thusݐሺݑܫ

 

൥
߬థ
߬ఏ
߬ట
൩ ൌ 	

ۏ
ێ
ێ
ێ
௫௫ܫെۍ ቀܭௗ߶ሶ ൅ ௣ܭ ׬ ߶ሶ ݐ݀	

஋
଴ ቁ

െܫ௬௬ ቀܭௗߠሶ ൅ ௣ܭ ׬ ሶߠ ݐ݀	
஋
଴ ቁ

െܫ௭௭ ቀܭௗ ሶ߰ ൅ ௣ܭ ׬ ሶ߰ ݐ݀	
஋
଴ ቁے

ۑ
ۑ
ۑ
ې

                                                         (3.33) 
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We have beforehand determined the relationship between torque and inputs, so we realize 

that 

  

߬஻ ൌ 	 ቎
ሺ߱ଵ݇ܮ

ଶ െ ߱ଷ
ଶሻ

ሺ߱ଶ݇ܮ
ଶ െ ߱ସ

ଶሻ
ܾሺ߱ଵ

ଶ െ ߱ଶ
ଶ ൅ ߱ଷ

ଶ െ ߱ସ
ଶሻ
቏ ൌ 	

ۏ
ێ
ێ
ێ
௫௫ܫെۍ ቀܭௗ߶ሶ ൅ ௣ܭ ׬ ߶ሶ ݐ݀	

஋
଴ ቁ

െܫ௬௬ ቀܭௗߠሶ ൅ ௣ܭ ׬ ሶߠ ݐ݀	
஋
଴ ቁ

െܫ௭௭ ቀܭௗ ሶ߰ ൅ ௣ܭ ׬ ሶ߰ ݐ݀	
஋
଴ ቁے

ۑ
ۑ
ۑ
ې

         (3.34) 

This gives us an arrangement of three equations with four unknowns. We can compel this 

by enforcing the constraint that our information sources (inputs) must keep the UAV aloft: 

Τ ൌmg                                                                                                                               (3.35) 

Note that this equation eliminates the fact that the thrust won't be pointed 

straightforwardly up. This will restrict the applicability of our controller, however, should 

not cause real problems for small deviations from stability. If we had a way of deciding 

the current angle precisely, we can recompense. If our gyro is precise enough, we can 

integrate the values obtained from the gyro to obtain the angles ߠ and ߶. In this case, we 

can compute the thrust necessary to keep the UAV aloft by projecting the thrust mg onto 

the inertial z-axis. We find that  

Τ௣௥௢௝ ൌ mg cos ߠ cos߶                                                                                      (3.36) 

Therefore, with an exact angle measurement, we can rather uphold the necessity that the 

thrust be equal to  

Τ ൌ
௠௚

ୡ୭ୱఏ ୡ୭ୱథ
                                                                                                        (3.37) 

 

In which case the component of the thrust pointing along the positive z-axis will be 

equivalent to mg. We realize that the thrust is relative to a weighted sum of the inputs:  

Τ ൌ
௠௚

ୡ୭ୱఏ ୡ୭ୱథ
ൌ ݇ ௜ߛ∑ 	⟹ ௜ߛ∑݇ ൌ 	

௠௚

௞ ୡ୭ୱఏ ୡ୭ୱథ
                                       (3.38) 

With this additional imperative, we have a set of four linear equations with four unknowns 

  :௜, the following input values obtainedߛ ௜. By solving for eachߛ

 



54 
 

ଵߛ ൌ 	
௠௚

ସ௞ ୡ୭ୱఏ ୡ୭ୱ∅
െ	

ଶ௕௘∅ூೣೣା௘ഗூ೥೥௞௅

ସ௕௞௅
                                                                (3.39) 

ଶߛ ൌ 	
௠௚

ସ௞ ୡ୭ୱఏ ୡ୭ୱ∅
൅

௘ഗூ೥೥
ସ௕

െ
௘ഇூ೤೤
ଶ௞௅

                                                                     (3.40) 

ଷߛ ൌ 	
௠௚

ସ௞ ୡ୭ୱఏ ୡ୭ୱ∅
െ

ିଶ௕௘ഝூೣೣା௘ഗூ೥೥௞௅

ସ௕௞௅
                                                             (3.41) 

ସߛ ൌ 	
௠௚

ସ௞ ୡ୭ୱఏ ୡ୭ୱ∅
൅

௘ഗூ೥೥
ସ௕

൅
௘ഇூ೤೤
ଶ௞௅

                                                                     (3.42) 

This is an entire detailing for PD controller. The controller drives the angular velocities 

and angles to zero, as shown in Fig (3.16) bellow.  

                   Angular velocities                                           Angular displacements 

Figure 3.16 Angular velocities and angular displacements. ߶, ,ߠ ߰ are coded as red, 

green, and blue. 
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Nevertheless, note that the angles are not entirely driven to zero. The average steady state 

error is approximately 0.3 o . This is a prevalent problem with utilizing PD controllers for 

mechanical systems and can be partially alleviated with a PID controller.  

In addition, take note of that since we are just controlling angular velocities, our positions 

and linear velocities don't go to zero. Nonetheless, the z position will stay consistent, in 

light of the fact that we have obliged the aggregate vertical thrust to be such that it keeps 

the UAV perfectly aloft, without ascending or descending. 

   PID Control  

PD controllers are suitable in their straightforwardness and simplicity of implementation, 

but they are frequently deficient for controlling mechanical systems. Particularly in the 

presence of noise and disturbances, PD controllers will often lead to steady state error. A 

PID control is a PD control with another term included, which is corresponding to the 

integral of the process variable. Including an integral term makes any remaining steady-

state error to develop and enact a change, so a PID controller ought to have the ability to 

track our path (and stabilize the UAV) with an essentially smaller steady-state error. The 

equations stay identical to the ones displayed in the PD case, but with an extra term in the 

error: 

 

݁థ ൌ ݇ௗ߶ሶ ൅ ݇௣ ׬ ߶ሶ݀ݐ
஋
଴ ൅	݇௜ ׬ ׬ ߶ሶ ݐ݀	ݐ݀	

஋
଴

஋
଴                                                  (3.43) 

 

݁ఏ ൌ ݇ௗߠሶ ൅ ݇௣ ׬ ݐሶ݀ߠ
஋
଴ ൅	݇௜ ׬ ׬ ሶߠ ݐ݀	ݐ݀	

஋
଴

஋
଴                                                    (3.44) 

 

݁ట ൌ ݇ௗ ሶ߰ ൅ ݇௣ ׬ ሶ߰݀ݐ
஋
଴ ൅	݇௜ ׬ ׬ ሶ߰ ݐ݀	ݐ݀	

஋
଴

஋
଴                                                  (3.45) 

 

However, PID controls come with their own inadequacies. One trouble that ordinarily 

happens with a PID control is known as integral windup. In some cases, integral wind-up 

can cause stretched oscillations instead of settling. In other cases, wind-up may indeed 
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cause the system to become unstable, instead of taking longer to reach a steady state, as 

shown in Fig (3.17) below.  

Figure 3.17 PID controller. 

If there is a large trouble in the process variable, this large trouble is integrated over time, 

becoming a still bigger control signal (due to the integral term). However, even once the 

system stabilizes, the integral is still big, therefore making the controller overshoot its 

objective. It may then start a series of dieing down oscillations, become unstable, or 

basically take an incredibly long time to reach a steady state. In order to avert this, we 

disable the integral function until we reach something near to the steady state. When we 

are in a controllable region near the desired steady state, we turn on the integral function, 

which pushes the system towards a minimal steady-state error, as shown in Fig (3.18). 
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Figure 3.18 With a properly implemented PID, we achieve an error of approximately 

0.06 after 10 seconds. 

 Remote Control (RC)  

There are many types of remote controls in markets, in our thesis we chose Fly Sky – T6  

6 channels 2.4 GHz AFHDS computerized digital proportional R/C airplane and 

helicopter system.  

AFHDS: Stands for “Automatic Frequency Hopping Digital System”. This highly 

developed radio transmission system will assure a long range, jamming free and long 

battery life experience. [53] 

RF specifications:  

Our radio system (remote control) works in the frequency range 2.4000 to 2.4835 GHz. 

500 KHz channel bandwidth, this band has been divided into 160 independent channels. 

Each radio system uses 16 different channels and 160 different types of hopping 
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algorithm. And uses less than 20 dBm (100 mV) from RF power and GFSK modulation 

type, with -1058 dBm of RX sensitivity. This radio system uses a high gain and high 

quality multidirectional antenna. It covers the whole frequency band, also assure a 

jamming free long radio transmissions. Fig (3.19) shows fly-sky remote control 

(transmitter and receiver). 

Figure 3.19 Fly – Sky remote control. 

In this thesis, we connect the receiver of remote control to the UAV by using servo wires; 

we connect it with the flight controller as shown in Fig (3.20) below. 

 

 

 

Figure 3.20 diagram shows the connection between RC receiver and flight controller. 
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 Reading signals from RC receiver  

Our contribution is designing a system that uses internet of things to make the control for 

Unmanned Aerial Vehicle (drone) from an infant distance by simulating the signals 

coming from RF receiver and remote control. So, we need to read the signals from RF 

receiver, actually we read it in two types: 

First type: we connect the receiver to the oscilloscope and take signals and all 

information from that signals, but these signals not accurate enough as shown in 

Fig(3.21). 

Figure 3.21 Oscilloscope signals from RF receiver. 

Second type: we connect the RF receiver to the PWM pins in the Arduino, and we wrote 

a code for Arduino to read the signals from PWM pins. In Arduino to read the total pulse 

we need to read the high and the low duration of the pulse, and we get: 

In High duration pulse: THR changes from 988 microsecond (down) to 1965 

microsecond (up)   (left bar in the remote), AIL (Roll) changes from (1250) microsecond 

(go to left side) to (1735) microsecond (go to right side) (right bar in remote) and the 

midpoint is (1495) microsecond. ELE (Pitch) changes from (1250) microsecond (go to 

forward) to (1735) microsecond (go to backward) (right bar in remote) and the midpoint 

is (1496) microsecond. RUD (Yaw) changes from (1250) microsecond (rotate to right) to 

(1739) microsecond (rotate to left) (left bar in remote) and the midpoint (1495) 

microsecond. AUX changes by the upper left tuning (VRB) from (983) microsecond (tune 

to the positive side) to (1907) microsecond (tune to the negative side) and the Midpoint 

(1373) microsecond (0 point), Fig (3.22) shows the diagram of high period pulses and Fig 

(3.23) shows the diagram of low period pulses. 
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Figure 3.22 High period pulses in microsecond. 

In Low duration pulse: THR changes from 17147 microsecond (down) to 16182 

microsecond (up) (left bar in the remote), AIL (Roll) changes from (16894) microsecond 

(go to left side) to (16409) microsecond (go to right side) (right bar in remote) and the 

midpoint is (16693) microsecond. ELE (Pitch) changes from (16894) microsecond (go to 

forward) to (16412) microsecond (go to backward) (right bar in remote) and the midpoint 

is (16693) microsecond. RUD (Yaw) changes from (16893) microsecond (rotate to right) 

to (16406) microsecond (rotate to left) (left bar in remote) and the midpoint (16695) 

microsecond. AUX changes by the upper left tuning (VRB) from (17153) microsecond 

(tune to the positive side) to (16236) microsecond (tune to the negative side) and the 

Midpoint (16688) microsecond (0 point), Fig (3.22) shows the diagram of high period 

pulses and Fig (3.23) shows the diagram of low period pulses. 
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Figure 3.23 Low period pulses in microsecond. 
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We summarized the high and low durations of the pulses in the following table (3.1). 

 

Table 3.1 High and low durations of pulses read from RF remote control. 

 
High duration of the 

pulse in µsec 
Low duration of the 

pulse in µsec 

THR 
Min 988 17147 

Max 1965 16184 

Yaw/RUD 

Right 1250 16893 

Left 1739 16406 

Mid 1495 16695 

Roll/AIL 

Right 1735 16409 

Left 1250 16894 

Mid 1495 16693 

Pitch/ELE 

Forward 1250 16894 

Backward 1735 16412 

Mid 1496 16693 

 Generating PWM by using Arduino Uno and Raspberry Pi3  

In order to achieve our contribution (IoT UAV) we replaced the RF remote control, by 

utilizing Arduino Uno and raspberry pi3 because RF remote control covers a limited 

distance and our contribution is to make our UAV infinite distance controlling by using 

the Internet. 

We used Raspberry Pi3 for connection and designed a GUI (Graphical User Interface) to 

control the UAV. GUI is a program interface that takes advantage of the computer's 

graphics capabilities to make the program easier to use. Well-designed graphical user 

interfaces can free the user from learning complex command languages. On the other 

hand, many users find that they work more effectively with a command-driven interface, 

especially if they already know the command language. 
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Our GUI was written in python programming language, and control the UAV through it. 

Figure (3.24) shows our GUI.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.24 Designed GUI. 

Because of our flight controller works in 5v and the Raspberry pi works in 3.3v therefore 

we need another electronic card that support 5v, this card is a microcontroller card 

Arduino Uno which gives us 5v with PWM ports. 

Our procedure is to control the UAV from Raspberry Pi3 using GUI in python, python 

give orders to the microcontroller card (Arduino Uno) which the last generate the right 

pulses needed as we read it from the table (3.1) above, and send it to the flight controller. 

 

 

 



64 
 

 Connection Establishment and object detection  

In order to establishment a connection between UAV and the earth station (desktop or 

laptop) we used TeamViewer application. The TeamViewer have many advantages over 

using real IP. One of them it is free to use while the real IP providers requires fees per 

period. Also the TeamViewer is more easer in installation and use rather than real IP. 

The earth station controlled the Raspberry Pi by running its operating system directly 

through TeamViewer and run the GUI of our UAV with all its instructions.   

For more features, the UAV able to tracking objects by using Raspberry Pi camera and 

based on the BGR color moment calculations.  

 Color detection in OpenCV and Python  

Color detection is the process of finding certain color and extracts it from its surroundings 

in order to detect objects having the same colors. The process in OpenCV is constructed 

using (cv2.inRange) function which is built in function and this function detects colors in 

a rage between lower and upper values that are provided for certain color range like blue 

for example in our work, in the following Figure (3.25) our detected object based on 

color. 

 

 

 

 

 

 

 

 

 

 

Figure 3.25 Detected object based on color. 
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In color detection it is recommended to convert the captured image from 'BGR' color 

range to HSV color range because it is more easer to isolate colors from each other's. 

In numerical representation in our code: 

lower = np.array([76,31,4])  represents the lower value for the color that we 

intended to detect. 

upper = np.array([210,90,70])  represents the upper value for the color that 

we intended to detect. 

thresh = cv2.inRange(blur, lower, upper) this part will detect the color 

in the image captured by camera that is limited between the lower and upper values of 

that is provided by us. 

Then we will find the contours in the image or frame under test by the following line in 

our code:  

contours,hierarchy= cv2.findContours(thresh,cv2.RETR_LIST, 

cv2.CHAIN_APPROX_SIMPLE) 

After that we will find the contour with the maximum area and we will consider it as our 

goal as shown in the following lines in code; finding contour with maximum area and 

store it as best_cnt:  

   max_area = 0 

   best_cnt = 1 

   for cnt in contours: 

       area = cv2.contourArea(cnt) 

       if area > max_area: 

          max_area = area 

          best_cnt = cnt 

After that we will find the centroid of the best contour and we will draw a box surrounding 

it as shown in previous Figure (3.25).  

  M = cv2.moments(best_cnt) 

  cx,cy = int(M['m10']/M['m00']), int(M['m01']/M['m00']) 
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CHAPTER 4 

SIMULATION 

 Quad copter simulation in Simulink 

The simulation process should be made before the construction of Quad copter, for that 

reason the simulation was made in Simulink to study the effect of weights, torques, forces, 

resulted from the frame weight, motors rotation speed, electronic card's weight, also the 

selecting of PID controller parameters and fine tuning these parameters. 

The simulation process is made using Sims cape multi body, before that CAD model 

should be imported from one of the mechanical 3d construction design programs, like 

solid works or others. 

Figure (4.1) shown below represents the frame 3D design for our quad copter and it will 

be used in our study. 

Figure 4.1 drone final mechanical model imported from auto cad or 3D max 
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The quad copter consists of many collected items which will represent the full Drone 

body like shown in previous figure. 

The importance of importing the drone as separated parts forming the full body is to 

control some of these parts and leaving others like rotating the motor shaft and keeping 

the motor body stable same as in reality. 

The process of controlling the Quad copter or making flight controller for it consists of 

many stages starting with inputs which are coming from the sensors which represents the 

values of (Roll, Pitch, Yaw, Altitude) as shown in figure (4.2) below: 

 

 

 

 

 

 

 

Figure 4.2 the sensor outputs 

The main benefit of sensor values is to give feed back to the controller to check the level 

of the drone axis, for example if we have the value of Pitch is (-22) it means that the drone 

is turning to right side and if we will leave it turning for unwanted period of time that 

means it will fall down, so the controller is responsible of returning the drone to the 

horizontal plane to prevent it from falling down. 

The same procedure will be applied for (Yaw, Roll and Altitude) to keep the drone stable 

in its flight. 

The most important issue is that the input coming from the IMU which will represent the 

values of (Yaw, Roll, Altitude), these values should be accurate to provide the flight 

controller with suitable values to insure the best flight, the inputs are simulated by using 

the input block shown in figure (4.2) above. 

The next step in the flight controller procedure is to calculate the error for (Yaw, Roll, 

Pitch and Altitude), error means the difference between the desired values and the 

measured ones, this step is made by the (GetErrors) block drown in figure(4.2) above. 
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After that the error values will be injected to flight controller in order to be evaluated and 

to be corrected as shown in figure (4.3) below. 

 

 

 

 

 

 

 

 

Figure 4.3 the injected values from error calculating block to the flight controller. 

Inside the flight controller, a correcting process will be made to reduce the error for (Yaw, 

Roll, Pitch and Altitude) smoothly using PID algorithm for each value separately. The 

main purpose for applying simulation for drone is to estimate the correct values for (P 

gain, I gain, D gain) in a way that prevents the drone from doing extreme actions or to go 

unstable during flight.  

To go further in our explanation we will show the inner circuits inside controller to show 

the hall procedure made by our system, as shown in Figure (4.4) below. 

 

 

 

 

 

 

 

 

 

Figure 4.4 the PID controller for (Yaw, Roll, Pitch and Altitude). 
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To explain the operation of the circuit we will start with the first section as shown in 

figure (4.5) below: 

 

 

 

 

 

 

 

Figure 4.5 first section inside controller. 

The PID controller for (z) means the PID for altitude; we can see that PID controller takes 

its input from the error signal (Err_Alt) which represents the difference between the actual 

altitude and the desired one, inside PID controller a PID control will be applied by 

selecting the values related to it as follows: 

Proportional (P): 4.5 

Integral (I):10 

Derivative (D): 1 

The output of PID controller is shown in figure (4.6) below and as we can see that both 

of its, stability and transient time is suitable (the most important goals of PID control), 

we will discuss the tuning effect on behavior later on. 

 

 

 

 

 

 

Figure 4.6 PID (z) output behavior. 
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The purpose of adding Altitude Cmd is to limit the boundaries of PID (z) control between 

the 0.8*(Ref_Spd_Max) as an upper limit and (Ref_Spd_Min) which represent the 

maximum reference speed and minimum reference speed, which means preventing the 

drone from reaching undesired speed. After that the (Saturation Dynamic) block also 

prevents the drone from exceeding the dynamic boundaries. 

Finally the corrected values will be send out as a decision to Quad motors through 

terminals(Spd_A, Spd_B, Spd_C, Spd_D) to (Quadcotor 3D Model) block to reposition 

the drone to the correct level and frame. 

We will discuss all the steps in the process to estimate the accurate values to our work. 

After starting the simulation we can draw the trajectory of drone by drawing the XY graph 

as shown in figure (4.7) below: 

 

 

 

 

 

 

 

 

 

Figure 4.7 drone trajectory. 

In the real time operation of quadcopter the commands operating it comes from remote 

control unit but in simulation in Simulink these commands can be applied from signal 

builder block in Simulink as shown figure(4.8) below: 
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Figure 4.8 Signal builder as an input signals. 

After starting simulation a 3D drone will be shown on mechanics explorer window as 

shown in figure (4.9) below: 

Figure 4.9 Mechanics explorer’s window during simulation. 

 

 Drone mechanical parts  

The mechanical parts forming the drone in Simulink is consist of the following drawing  

figure (4.10): 
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Figure 4.10 (a) Drone parts (first step). 

Figure 4.10 (b) Drone parts (second step). 

 

 

 

 

 

 

 

Figure 4.10 (c) Drone parts (third step). 

The first part consist of the following blocks: 
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 World block: the world block represents the world frame 

which is motionless and represents ground. 

 

Mechanism configuration: it applies a gravity effect to the 

body and it can be added in any direction x, y or z direction. 

 

The transform block represents connection between two 

frames. 

 

Represents a rectangular joint between two frames. This joint 

has two translational degrees of freedom represented by two 

prismatic primitives along a set of two mutually orthogonal 

axes. 

 

The rigid body represents frame on ground ( as a base ). 

 

This block converts the input Physical Signal to a unit less 

Simulink output signal. 

 

This block represents a joint with one translational degree of 

freedom. 

 

This block represents a joint with one rotational degree of 

freedom. 

 

This block is a function block and if the angle value is more 

than 360 degree it will make it in range of 360. 
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 PID different tuning values and its effect on flight  

1. For the following values of PID (z) controller we will get the output signal as in 

figure (4.11). 

Proportional (P): 4.5 

Integral (I): 10 

Derivative (D): 1 

 

 

 

 

 

 

 

Figure 4.11 Output from PID (z) controller. 

2. For the following values of PID (z) controller we will get the output signal as in 

figure (4.12).   

Proportional (P): 3.5 

Integral (I): 10 

Derivative (D): 1 

 

 

 

 

 

 

 

Figure 4.12 Output from PID (z) controller. 
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3. For the following values of PID (z) controller we will get the output signal as in 

figure (4.13).   

Proportional (P): 2.5 

Integral (I): 10 

Derivative (D): 1 

 

 

 

 

 

 

 

Figure 4.13 Output from PID (z) controller. 

4. For the following values of PID (z) controller we will get the output signal as in 

figure (4.14).   

Proportional (P): 0.5 

Integral (I): 10 

Derivative (D): 1 

 

 

 

 

 

 

 

Figure 4.14 Output from PID (z) controller. 

 



76 
 

5. For the following values of PID (z) controller we will get the output signal as in 

figure (4.15).   

Proportional (P): 4.5 

Integral (I): 8 

Derivative (D): 1 

 

 

 

 

 

 

 

Figure 4.15 Output from PID (z) controller. 

6. For the following values of PID (z) controller we will get the output signal as in 

figure (4.16).   

Proportional (P): 4.5 

Integral (I): 6 

Derivative (D): 1 

 

 

 

 

 

 

 

Figure 4.16 Output from PID (z) controller. 
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7. For the following values of PID (z) controller we will get the output signal as in 

figure (4.17).   

Proportional (P): 4.5 

Integral (I): 2 

Derivative (D): 1 

 

 

 

 

 

 

 

Figure 4.17 Output from PID (z) controller. 

8. For the following values of PID (z) controller we will get the output signal as in 

figure (4.18).   

Proportional (P): 4.5 

Integral (I): 2 

Derivative (D): 0.5 

 

 

 

 

 

 

 

 

Figure 4.18 Output from PID (z) controller. 
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9. For the following values of PID (z) controller we will get the output signal as in 

figure (4.19). 

Proportional (P): 4.5 

Integral (I): 2 

Derivative (D): 0.1 

 

 

 

 

 

 

 

Figure 4.19 Output from PID (z) controller. 

 Conclusion of Simulation 

As we can see from the previous drawings and values that  There are infinite probability 

for changing PID gain values so the tuning of the right values need to be tried to get a 

small transient period and less oscillation but there will be limitations because the drone 

will response slowly to the process of control. 
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CHAPTER 5 

RESULT AND DISCUSSION 

The new generation of Wireless Sensor Networs, that is known as the the Internet of 

Things (IoT) enables the direct connection of physical objects to the Internet using 

microcontrollers.  

The Internet of Things (IoT) is a technology that allows objects to be connected to hte 

internet, enabling them with communication capabilities (with other objects and with 

people).  

In our study we developed an UAV system that is controlled using internet connection 

which gives capability for infinite distance control, the UAV in our system can detect 

certain objects using their colors. 

 after construction of the system and after making test for flight control and object 

detection we discovered that the process of flight control based on internet connection 

demands a high bit rate for communication to ensure the stability of the UAV system and 

online video transmission and object detection , also such a system needs an autonomous 

flight algorithm in case of the connection lost or jamming procedure from enemy in case 

of military applications. 

Also the process of using raspberry pi 3 for such an action is somehow not reasonable 

because of the limited capabilities for such an embedded systems and the heavy task 
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needed in this operation. 

In the futer work it is recommended to use Fuzzy Logic in after recognition step in order 

to control the movment of object toward target.  

A detail study should be made to select the member ship functions for fuzzy logic, the 

selection also should cover the limit values for each member ship function and that would 

be made by experuments.  

The movment should control the values of Yaw, Pitch and Roll to reach the target in a 

smooth motion and not to lose its trace during the tracking process.  

The Defuzzification Methods should be made according to selected method from fuzzy 

known methods such as (Center of are, Center of sums, Center of maximum,...etc.). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


