ISTANBUL

KEMERBURGAZ

UNIVERSITESI

operating system
Spring 2017
Prof.Dr. Hasan Balik
Student Name : Walid .W. Ramadan mansour
Student ID : 163110469
Email : wild.mansour526 @gmail.com

Unix SVR4 (OpenSolaris and illumos distributions)
Process and Thread Management

OpensSolaris is a discontinued, open source computer operating system based
on Solaris created by Sun Microsystems. It was also the name of the project
Initiated by Sun to build a developer and user community around the software.
After the acquisition of Sun Microsystems in 2010, Oracle decided to
discontinue open development of the core software, and replaced the
OpenSolaris distribution model with the proprietary Solaris Express.

® illumos Is a free and open-source Unix operating system. It derives
from OpenSolaris, which in turn derives from SVR4 UNIX and Berkeley
Software Distribution (BSD). illumos comprises a kernel, device drivers,
system libraries, and utility software for system administration. This core Is
now the base for many different open-sourced OpenSolaris distributions,! in
a similar way in which the Linux kernel is used in different Linux
distributions.

https://en.wikipedia.org/wiki/Open_source
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Solaris_(operating_system)
https://en.wikipedia.org/wiki/Sun_Microsystems
https://en.wikipedia.org/wiki/Sun_acquisition_by_Oracle
https://en.wikipedia.org/wiki/Solaris_(operating_system)
https://en.wikipedia.org/wiki/Free_and_open-source_software
https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/OpenSolaris
https://en.wikipedia.org/wiki/SVR4
https://en.wikipedia.org/wiki/Berkeley_Software_Distribution
https://en.wikipedia.org/wiki/Kernel_(computing)
https://en.wikipedia.org/wiki/Device_driver
https://en.wikipedia.org/wiki/Library_(computing)
https://en.wikipedia.org/wiki/Utility_software
https://en.wikipedia.org/wiki/System_administration
https://en.wikipedia.org/wiki/Illumos
https://en.wikipedia.org/wiki/Illumos
https://en.wikipedia.org/wiki/Linux_kernel
https://en.wikipedia.org/wiki/Linux_distribution

OpenSolaris implements multilevel thread support designed to provide
considerable flexibility in exploiting processor resources.

Processes

UNIX uses two categories of processes: system processes and user processes.
System processes run in kernel mode and execute operating system code to perform
administrative and housekeeping functions, such as allocation of memory and process
swapping. User processes operate in user mode to execute user programs and utilities
and in kernel mode to execute instructions belong to the kernel. A user process enters
kernel mode by issuing a system call, when an exception (fault)

IS generated or when an interrupt occurs.

Process States

A total of nine process states are recognized by the UNIX operating system
UNIX employs two Running states to indicate whether the process is executing in user

mode or kernel mode. A distinction is made between the two states: (Ready to Run, in
Memory) and (Preempted). These are essentially the same state, as indicated by the
dotted line joining them. The distinction is made to emphasize the way in which the
preempted state is entered. When a process is running in kernel mode (as a result of a
supervisor call, clock interrupt, or 1/O interrupt), there will come a time when the
kernel has completed its work and is ready to return control to the user program. At this
point, the kernel may decide to preempt the current process in favor of one that is ready
and of higher priority. In that case, the current process moves to the preempted state.
However, for purposes of dispatching, those processes in the preempted state and those
In the Ready to Run, in Memory state form one queue.

Process States

Tzer Eunning
Eernel Bunning
Eeady to Eun, in Memory

Asleep in Memory

Eeady to Eun, Swapped

sleeping, Swapped

Preempted

Created

Zombie

Executing 1n user mode.
Executing in kernel mode.
Eeady to run as soon as the kernel schedules it

Tnakle to execute until an event occurs, process 13 10 main
memaoty (ablocked state),

Process 15 ready to run, but the swapper must swap the process into
main memoty before the kernel can schedule it to execute.

The process 13 awaiting an event and has been swapped to
secotdary storage (a blocked state).

Process 15 returning from kernel to user mode, but the kernel
preempts it and does a process switch to schedule another process.

Process 15 newly created and not wet ready to run,

Process no longer exists, but it leaves a record for its parent
process to collect.

Process Description

Process Image

A process in UNIX is a rather complex set of data structures that provide the
operating system with all of the information necessary to manage and dispatch

processes. summarizes the elements of the process image, which are organized
Into three parts:

> user-level context.
> register context.

> system-level context.

Unix — User Level Context

Contains the basic elements of a user’s program and it is usually generated from
a compiled object file

® User Code

® Read only and iIs intended to hold the program's instructions
¢ User Data

® Data accessible and processed by this process
® User Stack

® Used while executing in user mode for procedure calls and returns
and parameter passing

¢ Shared Memory

® Data area shared with other processes; there is just one physical copy
of shared area

UNIX — Register Context

® When a process is not running, the processor status information is
stored in the register context area

® Program Counter

® May be in either user or kernel space

® PSW (Processor Status Word)

® Stack Pointer

® Points to top of user/kernel stack

® General Registers

UNIX — System Level Context

® Contains the remaining information that the operating system needs to
manage the process

® Contains
® Astatic part — stays at the same size during a process lifetime
® Process table entry
¢ U area
® Per process region table

® Used by the memory management system (contains virtual
memory info)

® Adynamic part

® Kernel Stack - this stack is used when the process is executing in
kernel mode and contains information that must be saved and
restored as procedure calls and interrupts occur

Process Control
Process creation in UNIX is made by means of the kernel system call. fork(). When a process

1ssues a fork request. the operating system performs the following functions [BACHS6]:

1. Tt allocates a slot in the process table for the new process.

It assigns a umque process ID to the child process.

. It makes a copy of the process image of the parent. with the exception of any shared
memory.

4, It mcrements counters for any files owned by the parent. to reflect that an additional

process now also owns those files.

It assigns the child process to a Ready to Run state,

It returns the ID number of the child to thi parent process. and a 0 value to the child

process.

=

All of this work 15 accomplished in kermel mode 1n the parent process. When the kernel has
completed these functions it can do one of the following. as part of the dispatcher routine:

1. Stay in the parent process. Control returns to user mode at the point of the fork call of the
parent.

2, Transfer control to the child process. The child process begins executing at the same
point i the code as the parent. namely at the return from the fork call.

3. Transfer control to another process. Both parent and child are left in the Ready to Run
state.

UNIX - Process Table Entry

® Status — Current state of a process

® Pointers to U area and user code/data

® Process size

® Identifiers (real/effective user/group id)

® Process/Parent ID

® Event Descriptor

® Signal — Signals sent but not handled

® Priority

® Timers - process execution time, user-set alarm
Memory status — Is it swapped out?

UNIX — U Area

Identifiers (real/effective user/group id)
Timers (time spent in user/kernel mode)
Signal Handler array

Control terminal (if it exists)

System call return value

System call errors

I/0O and File parameters

File Descriptor information

Permission Mode Field

Limit on process size

UNIX process structure OpenSolaris process structure

Process ID Process ID
User 1Ds User IDs
Sigeal dispatch table Signal dispatch table
Memory map Memoey man
Prionty
Signad mask
gislors
ks Iﬁ\
F‘lc dﬁl'nplott 'S L F'lc ‘kﬁc‘iwn
Processor state
LWPp2 LWP 1
LWPID B camnd LWP 1D
Pnoars Pricesy
Sugnal sk Signal muck
Registes Kegisicrs
STACK STACK
LA B J LA A J

Solaris Process structure and traditional Unix

Process structure

Threads

® Process: This is the normal UNIX process and includes the user’s address
space, stack, and process control block.

® User-level threads: Implemented through a threads library in the address
space of a process, these threads are invisible to the OS.A user-level thread
(ULT)10 is a user-created unit of execution within a process.

® Lightweight processes: A lightweight process (LWP) can be viewed as a
mapping between user level threads and kernel threads. Each LWP supports
ULT and maps to one kernel thread. LWPs are scheduled by the kernel
Independently and may execute in parallel on multiprocessors.

® Kernel threads: These are the fundamental entities that can be scheduled and
dispatched to run on one of the system processors.

Process 1 Process 2

5

¢

Process 3 Process 4 Process 5

SR R N

¢

s User-level thread @ Kernel-level thread @ Light-weight Process E Processor

Process 2 is equivalent to a pure ULT approach
Process 4 is equivalent to a pure KLT approach
We can specify a different degree of parallelism (process 3 and 5)

_/ | N
B i Ll Ly tien gy |
| & ORO O ©O ©
Kernel
Hardware Iﬂ Iil Iﬂ Iﬂ Iil

16

Solaris: versatility

> We can use ULTs when logical parallelism does not need to be
supported by hardware parallelism (we save mode switching)

Ex: Multiple windows but only one is active at any one time

> If threads may block then we can specify two or more LWPs to
avoid blocking the whole application

user-level thread execution

® Transitions among these states is under the exclusive control of
the application

® atransition can occur only when a call is made to a function
of the thread library

® It’s only when a ULT is in the active state that it Is attached to a
LWP (so that it will run when the kernel level thread runs)

® athread may transfer to the sleeping state by invoking a
synchronization primitive (chap 5) and later transfer to the
runnable state when the event waited for occurs

® Athread may force another thread to go to the stop state...

18

user-level thread states

Stop > User-Level Threads
. Runnable

Wakeup
~ Sleeping

Preempt
Stop

Dispatch

Decomposition of user-level Active state

® When a ULT iIs Active, It IS associated to a LWP and, thus, to a
KLT

® Transitions among the LWP states is under the exclusive control
of the kernel

® A LWP can be in the following states:
® running: when the KLT Is executing

® blocked: because the KLT issued a blocking system call (but
the ULT remains bound to that LWP and remains active)

® runnable: waiting to be dispatched to CPU

Lightweight Process States

Timeslice
or Preempt

Dispatch

Blocking
System
Call

Continue

Blocked

Lightweight Processes

LWQP states are independent of ULT states
(except for bound ULTSs)

The Benefits of Threads

» Takes less time to create a new thread than a process
» Less time to terminate a thread than a process
» Less time to switch between two threads within the same process

» Threads within the same process share memory and files --> they can
communicate without invoking the kernel

