
operating system
Spring 2017

Prof.Dr. Hasan Balik
Student Name : Walid .W. Ramadan mansour

Student ID : 163110469
Email : wild.mansour526@gmail.com

Unix SVR4 (OpenSolaris and illumos distributions)

Process and Thread Management

OpenSolaris is a discontinued, open source computer operating system based

on Solaris created by Sun Microsystems. It was also the name of the project

initiated by Sun to build a developer and user community around the software.

After the acquisition of Sun Microsystems in 2010, Oracle decided to

discontinue open development of the core software, and replaced the

OpenSolaris distribution model with the proprietary Solaris Express.

• illumos is a free and open-source Unix operating system. It derives

from OpenSolaris, which in turn derives from SVR4 UNIX and Berkeley

Software Distribution (BSD). illumos comprises a kernel, device drivers,

system libraries, and utility software for system administration. This core is

now the base for many different open-sourced OpenSolaris distributions,[3] in

a similar way in which the Linux kernel is used in different Linux

distributions.

https://en.wikipedia.org/wiki/Open_source
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Solaris_(operating_system)
https://en.wikipedia.org/wiki/Sun_Microsystems
https://en.wikipedia.org/wiki/Sun_acquisition_by_Oracle
https://en.wikipedia.org/wiki/Solaris_(operating_system)
https://en.wikipedia.org/wiki/Free_and_open-source_software
https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/OpenSolaris
https://en.wikipedia.org/wiki/SVR4
https://en.wikipedia.org/wiki/Berkeley_Software_Distribution
https://en.wikipedia.org/wiki/Kernel_(computing)
https://en.wikipedia.org/wiki/Device_driver
https://en.wikipedia.org/wiki/Library_(computing)
https://en.wikipedia.org/wiki/Utility_software
https://en.wikipedia.org/wiki/System_administration
https://en.wikipedia.org/wiki/Illumos
https://en.wikipedia.org/wiki/Illumos
https://en.wikipedia.org/wiki/Linux_kernel
https://en.wikipedia.org/wiki/Linux_distribution

OpenSolaris implements multilevel thread support designed to provide

considerable flexibility in exploiting processor resources.

UNIX uses two categories of processes: system processes and user processes.

System processes run in kernel mode and execute operating system code to perform

administrative and housekeeping functions, such as allocation of memory and process

swapping. User processes operate in user mode to execute user programs and utilities

and in kernel mode to execute instructions belong to the kernel. A user process enters

kernel mode by issuing a system call, when an exception (fault)

is generated or when an interrupt occurs.

Process States

A total of nine process states are recognized by the UNIX operating system

UNIX employs two Running states to indicate whether the process is executing in user

mode or kernel mode. A distinction is made between the two states: (Ready to Run, in

Memory) and (Preempted). These are essentially the same state, as indicated by the

dotted line joining them. The distinction is made to emphasize the way in which the

preempted state is entered. When a process is running in kernel mode (as a result of a

supervisor call, clock interrupt, or I/O interrupt), there will come a time when the

kernel has completed its work and is ready to return control to the user program. At this

point, the kernel may decide to preempt the current process in favor of one that is ready

and of higher priority. In that case, the current process moves to the preempted state.

However, for purposes of dispatching, those processes in the preempted state and those

in the Ready to Run, in Memory state form one queue.

Process States

Process Description

Process Image

A process in UNIX is a rather complex set of data structures that provide the

operating system with all of the information necessary to manage and dispatch

processes. summarizes the elements of the process image, which are organized

into three parts:

 user-level context.

 register context.

 system-level context.

Unix – User Level Context

Contains the basic elements of a user’s program and it is usually generated from
a compiled object file

• User Code

• Read only and is intended to hold the program's instructions

• User Data

• Data accessible and processed by this process

• User Stack

• Used while executing in user mode for procedure calls and returns
and parameter passing

• Shared Memory

• Data area shared with other processes; there is just one physical copy
of shared area

UNIX – Register Context

• When a process is not running, the processor status information is

stored in the register context area

• Program Counter

• May be in either user or kernel space

• PSW (Processor Status Word)

• Stack Pointer

• Points to top of user/kernel stack

• General Registers

UNIX – System Level Context
• Contains the remaining information that the operating system needs to

manage the process

• Contains

• A static part – stays at the same size during a process lifetime

• Process table entry

• U area

• Per process region table

•Used by the memory management system (contains virtual

memory info)

• A dynamic part

• Kernel Stack - this stack is used when the process is executing in

kernel mode and contains information that must be saved and

restored as procedure calls and interrupts occur

UNIX - Process Table Entry

• Status – Current state of a process

• Pointers to U area and user code/data

• Process size

• Identifiers (real/effective user/group id)

• Process/Parent ID

• Event Descriptor

• Signal – Signals sent but not handled

• Priority

• Timers - process execution time, user-set alarm

• Memory status – Is it swapped out?

UNIX – U Area

• Identifiers (real/effective user/group id)

• Timers (time spent in user/kernel mode)

• Signal Handler array

• Control terminal (if it exists)

• System call return value

• System call errors

• I/O and File parameters

• File Descriptor information

• Permission Mode Field

• Limit on process size

Solaris Process structure and traditional Unix

Process structure

Threads

• Process: This is the normal UNIX process and includes the user’s address

space, stack, and process control block.

• User-level threads: Implemented through a threads library in the address

space of a process, these threads are invisible to the OS.A user-level thread

(ULT)10 is a user-created unit of execution within a process.

• Lightweight processes: A lightweight process (LWP) can be viewed as a

mapping between user level threads and kernel threads. Each LWP supports

ULT and maps to one kernel thread. LWPs are scheduled by the kernel

independently and may execute in parallel on multiprocessors.

• Kernel threads: These are the fundamental entities that can be scheduled and

dispatched to run on one of the system processors.

16Process 2 is equivalent to a pure ULT approach
Process 4 is equivalent to a pure KLT approach
We can specify a different degree of parallelism (process 3 and 5)

17

Solaris: versatility

We can use ULTs when logical parallelism does not need to be

supported by hardware parallelism (we save mode switching)

Ex: Multiple windows but only one is active at any one time

If threads may block then we can specify two or more LWPs to

avoid blocking the whole application

18

user-level thread execution

• Transitions among these states is under the exclusive control of

the application

• a transition can occur only when a call is made to a function

of the thread library

• It’s only when a ULT is in the active state that it is attached to a

LWP (so that it will run when the kernel level thread runs)

• a thread may transfer to the sleeping state by invoking a

synchronization primitive (chap 5) and later transfer to the

runnable state when the event waited for occurs

• A thread may force another thread to go to the stop state...

19

user-level thread states

(attached to a LWP)

20

Decomposition of user-level Active state

• When a ULT is Active, it is associated to a LWP and, thus, to a

KLT

• Transitions among the LWP states is under the exclusive control

of the kernel

• A LWP can be in the following states:

• running: when the KLT is executing

• blocked: because the KLT issued a blocking system call (but

the ULT remains bound to that LWP and remains active)

• runnable: waiting to be dispatched to CPU

21

Lightweight Process States

LWP states are independent of ULT states

(except for bound ULTs)

The Benefits of Threads

Takes less time to create a new thread than a process

 Less time to terminate a thread than a process

 Less time to switch between two threads within the same process

 Threads within the same process share memory and files --> they can

communicate without invoking the kernel

