# Unix SVR4 I/O Management and Disk Scheduling



**IT540** Operating Systems

Berat Kaan Çelen Advisor: Prof. Hasan Hüseyin Balık

# Outline

- I/O Devices
  - Categories of I/O Devices
  - Differences in I/O Devices
  - Techniques for Performing I/O
    - Direct Memory Access
  - Design Objectives
  - I/O Buffering
- Disk Drive
  - Disk Performance Parameters
  - Disk Scheduling Algorithms
  - RAID
  - Disk Cache
- UNIX SVR4 I/O




# **Categories of I/O Devices**

- Human readable
  - Communicating with the user
  - Printers, terminals, monitör, keyboard, Mouse
- Machine readable
  - Communicating with the electronic equipment
  - Disk drives, USB sticks, sensors
- Communication
  - Communicating with the remote devices
  - Modems, digital line drivers

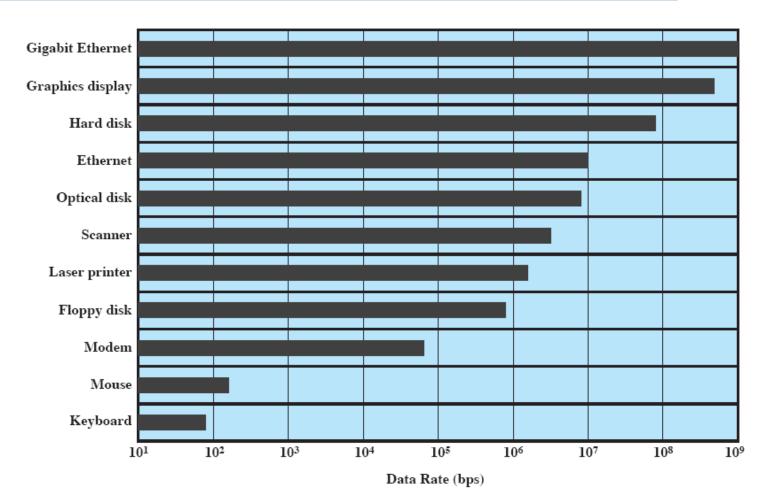


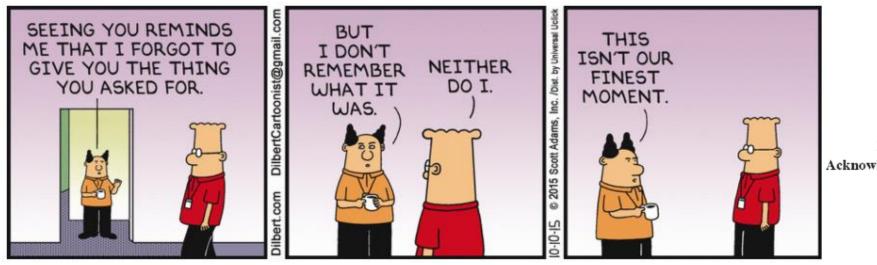


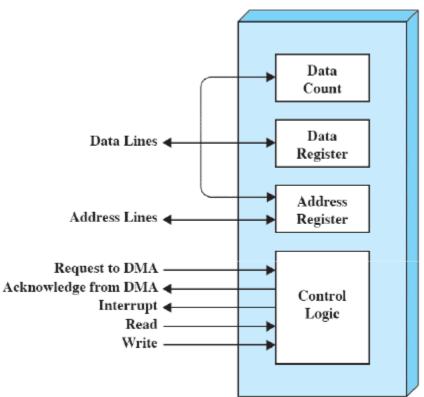


# **Differences in I/O Devices**

- Data Rate
- Application
- Complexity of Control
- Unit of Transfer
- Data Representation
- Error Conditions





Figure 11.1 Typical I/O Device Data Rates


## **Techniques for Performing I/O**

- Programmed I/O
  - the processor issues an I/O command on behalf of a process to an I/O module; that process then busy waits for the operation to be completed before proceeding
- Interrupt-driven I/O
  - Efficiency improves as processor does not spend time waiting for an I/O operation to be performed
- Direct Memory Access (DMA)
  - a DMA module controls the exchange of data between main memory and an I/O module

#### **Direct Memory Address**

- Processor delegates I/O operation to the DMA module
- DMA module transfers data directly to or from memory
- When complete DMA module sends an interrupt signal to the processor





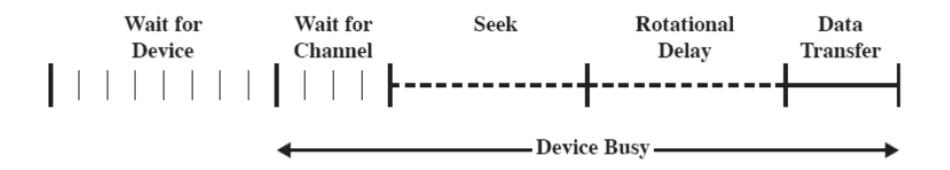
## **Design Objectives**

#### Efficiency

- Major effort in I/O design
- Important because I/O operations often form a bottleneck
- Most I/O devices are extremely slow compared with main memory and the processor
- The area that has received the most attention is disk I/O

#### Generality

- Desirable to handle all devices in a uniform manner
- Applies to the way processes view I/O devices and the way the operating system manages I/O devices and operations
- Diversity of devices makes it difficult to achieve true generality
- Use a hierarchical, modular approach to the design of the I/O function


# I/O Buffering

- Processes must wait for I/O to complete before proceeding, to avoid deadlock certain pages must remain in main memory during I/O
- It may be more efficient to perform input transfers in advance of requests being made and to perform output transfers some time after the request is made.
  - No Buffer
  - Single Buffer
  - Block-Oriented Single Buffer
  - Stream-Oriented Single Buffer
  - Double Buffer
  - Circular-Buffer



#### **Disk Performance Parameters**

- Access Time is the sum of:
  - Seek time: The time it takes to position the head at the desired track
  - Rotational delay or rotational latency: The time its takes for the beginning of the sector to reach the head
- Transfer Time is the time taken to transfer the data.



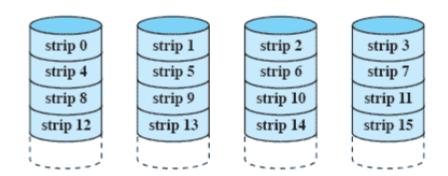
## **Disk Scheduling Algorithms**

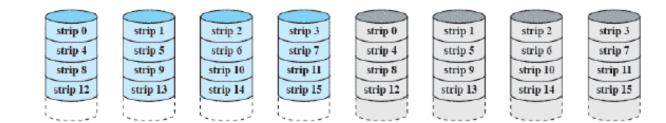
| Name                             | Description                                                | Remarks                                    |  |  |  |
|----------------------------------|------------------------------------------------------------|--------------------------------------------|--|--|--|
| Selection according to requestor |                                                            |                                            |  |  |  |
| RSS                              | Random scheduling                                          | For analysis and simulation                |  |  |  |
| FIFO                             | First in first out                                         | Fairest of them all                        |  |  |  |
| PRI                              | Priority by process                                        | Control outside of disk queue management   |  |  |  |
| LIFO                             | Last in first out                                          | Maximize locality and resource utilization |  |  |  |
|                                  | Selection according to                                     | requested item                             |  |  |  |
| SSTF                             | Shortest service time first                                | High utilization, small queues             |  |  |  |
| SCAN                             | Back and forth over disk                                   | Better service distribution                |  |  |  |
| C-SCAN                           | One way with fast return                                   | Lower service variability                  |  |  |  |
| N-step-SCAN                      | SCAN of N records at a time                                | Service guarantee                          |  |  |  |
| FSCAN                            | N-step-SCAN with N = queue size at beginning of SCAN cycle | Load sensitive                             |  |  |  |

#### RAID

- Redundant Array of Independent Disks
- Set of physical disk drives viewed by the operating system as a single logical drive
- Data are distributed across the physical drives of an array
- Redundant disk capacity is used to store parity information which provides recoverability from disk failure



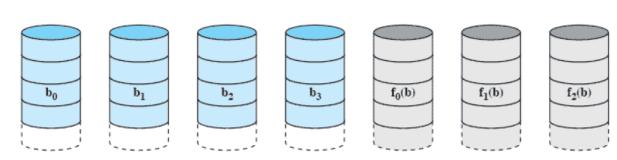


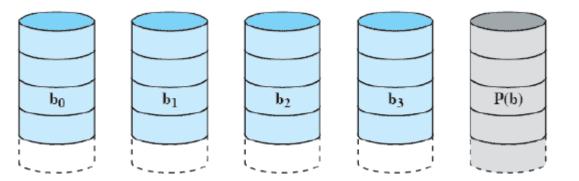


### **RAID 0 – Stripped**

#### **RAID 1 - Mirrored**

- Not a true RAID no redundancy
- Disk failure is catastrophic
- Very fast due to parallel read/write

- Redundancy through duplication instead of parity.
- Read requests can made in parallel.
- Simple recovery from disk failure



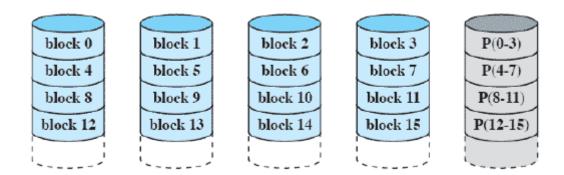



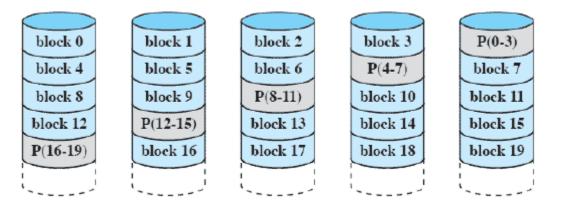

#### **RAID 2 – Hamming**

#### RAID 3 - Bit-interleaved parity

- Synchronised disk rotation
- Data stripping is used (extremely small)
- Hamming code used to correct single bit errors and detect double-bit errors
- Similar to RAID-2 but uses all parity bits stored on a single drive



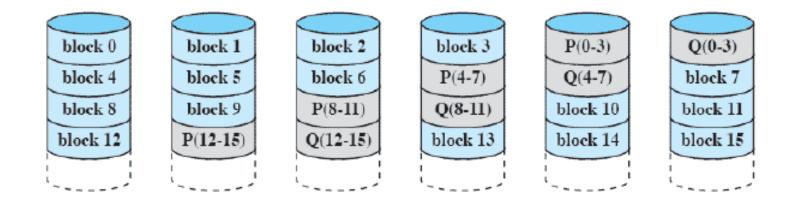



#### RAID 4

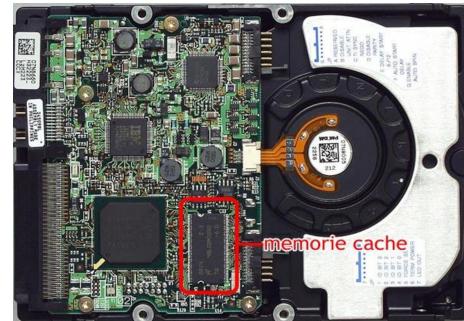
#### RAID 5

- Block-level parity
- A bit-by-bit parity strip is calculated across corresponding strips on each data disk
- The parity bits are stored in the corresponding strip on the parity disk



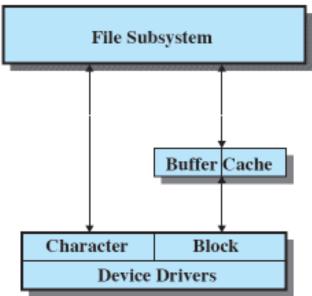



- Block-level Distributed parity
- Similar to RAID-4 but distributing the parity bits across all drives


#### **RAID 6 - Dual Redundancy**

- Two different parity calculations are carried out
  - stored in separate blocks on different disks.
- Can recover from two disks failing

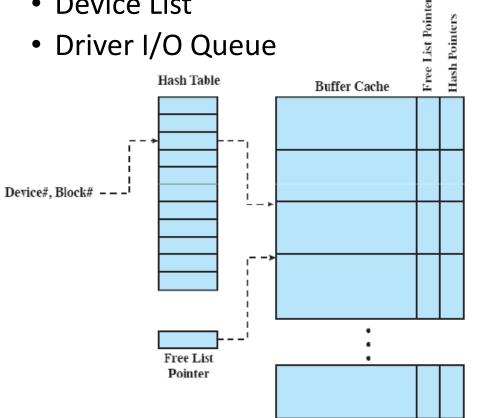



#### **Disk Cache**

- Buffer in main memory for disk sectors (ex: HDD with 64mb cache)
- Contains a copy of some of the sectors on the disk
- When an I/O request is made for a particular sector,
  - a check is made to determine if the sector is in the disk cache.
- A number of ways exist to populate the cache
  - Least Recently Used
  - Least Frequently Used



#### UNIX SVR4 I/O


- Each I/O device is associated with a special file
  - Managed by the file system
  - Provides a clean uniform interface to users and processes.
- To access a device, read and write requests are made for the special file associated with the device.
- Two types of I/O
  - Buffered
    - Buffer Cache
    - Character Queue
  - Unbuffered



#### **Buffer Cache**

#### **Character Queue**

- Three lists are maintained
  - Free List
  - Device List
  - Driver I/O Queue



- Used by character oriented devices
  - Ex: terminals and printers
- Either written by the I/O device and read by the process or vice versa
  - Producer/consumer model used

#### Unbuffered I/O

- Unbuffered I/O is simply DMA between device and process
  - Fastest method
  - Process is locked in main memory and can not be swapped out
  - Device is tied to process and unavailable for other processes

|                     | Unbuffered I/O | Buffer Cache | Character Queue |
|---------------------|----------------|--------------|-----------------|
| Disk drive          | X              | X            |                 |
| Tape drive          | X              | X            |                 |
| Terminals           |                |              | X               |
| Communication lines |                |              | X               |
| Printers            | X              |              | X               |



#### Resources

- 1. I/O management UnixWare 7 Documentation, http://uw714doc.sco.com/en/SEC\_admin/\_IO\_Management.html
- Sanjiv K. Bhatia, <u>www.cs.umsl.edu/~sanjiv/classes/cs4760/lectures/io.pdf</u>,
- 3. Indiana Univercity, Knowledge Base, <u>https://kb.iu.edu/d/agjs</u>
- 4. Dave Bremer Otago Polytechnic, NZ, <u>www.csd.uwo.ca/courses/CS3305a/Chapter11-new.pdf</u>
- 5. William Stallings, I/O Management and Disk Scheduling, http://cs.nyu.edu/courses/fall12/CSCI-GA.2250-001/slides/Chapter11.pdf
- 6. Patricia Roy Manatee Community College, Venice, www.dcs.bbk.ac.uk/~szabolcs/CompSys/cs-io.pdf