
Unix SVR4 (Open Solaris
and illumos distributions)

CPU Scheduling

outline

 Definition the Unix SVR4

Definition the OpenSolaris

Definition the Illumos

Scheduling review

Unix SVR4 Scheduling

SVR4 priority classes

CPU Scheduling

UNIX SVR4

 The Unix operating system is a set of programs that act
as a link between the computer and the user.

 The computer programs that allocate the system
resources and coordinate all the details of the computer's
internals is called the operating system or the kernel.

 Users communicate with the kernel through a program
known as the shell. The shell is a command line
interpreter; it translates commands entered by the user
and converts them into a language that is understood by
the kernel.

 There are various Unix variants available in the market.
Solaris Unix, AIX, HP Unix and BSD are a few examples.
Linux is also a flavor of Unix which is freely available.

UNIX SVR4

 Unix was originally developed in 1969 by a group of AT&T

employees (Ken Thompson, Dennis Ritchie, and

Douglas McIlroy) and in 1983. Four major versions of

System V were released, numbered 1, 2, 3, and 4. System

V Release 4, or SVR4, was commercially the most

successful version.

 Several people can use a Unix computer at the same time;

hence Unix is called a multiuser system.

 A user can also run multiple programs at the same time;

hence Unix is a multitasking environment.

OpenSolaris

OpenSolaris is an open source operating system ,which is

developed and sponsored by Sun Microsystems Inc. and a

community of contributors . It is based on an development

version of an enterprise Solaris OS, which was open sourced

by Sun in 2005. More precisely , the OpenSolaris now

represents an operating system , a community and a source

base and in 2010, Oracle decided to discontinue open

development of the core software, and replaced the

OpenSolaris distribution model with the proprietary Solaris

Express

illumos

 Illumos is a free and open-source unix operating system

it is derives from opensolaris which in turn derives from

SVR4 unix and berkeley software distribution (BSD)

illumos comprises a kernel , device drivers , system

libraries and utility software for system administration .

 This core is now the base for many different open-

sourced opensolaris distribution. Illumos is a

consolidation of software that forms the core of an

operating system.

Finally OpenSolaris and its derivatives are

the only SVR4 descendants that are open-

source software. Core system software

continues to be developed as illumos used in

illumos distributions such as SmartOS,

OpenIndiana and others.

illumos

Scheduling review

 Scheduling mechanism is the part of the

process manager that handles the removal of the

running process of CPU and the selection of another

process on the basis of a particular strategy.

 Scheduler chooses one from the ready threads to use

the CPU when it is available.

 Scheduling policy determines when it is time for a

thread to be removed from the CPU and which ready

thread should be allocated the CPU next .

UNIX SVR4 Scheduling

 The scheduling algorithm used in UNIX SVR4 is a complete overhaul
of the scheduling algorithm used in earlier UNIX systems

 Goal: give preference in the following order

 Highest preference to real-time processes.

 Next-highest to kernel-mode processes.

 Lowest preference to other user-mode processes (time-shared
processes).

 Major enhancements

 The addition of a preemptable static priority scheduler.

 The introduction of (160) priority levels divided into three priority
classes.

 The introduction of preemption points in the kernel (points where
the kernel can safely interrupt and schedule a new process).

 Implementation

 A dispatch queue is associated with each priority level;

processes at that level are executed round-robin

(dispq)

 A bit-map vector, dqactmap, contains one bit for each

priority level; the bit is set to one for any priority level

with a nonempty queue .

 When a process leaves the Running state (block, time-

slice expiration, or preemption), the dispatcher checks

dqactmap and dispatches a ready process from the

highest-priority nonempty queue.

UNIX SVR4 Scheduling (cont.)

Dispatch Queues

0 0
160

159

158

157

156

155

. . .

P

dqactmap

P P

P P

1 0 10

dispq

. . .

Figure (1) SVR4 dispatch queues

UNIX SVR4 Scheduling (cont.)

When a defined preemption point is reached, the

kernel

Checks the flag kprunrun

If set this indicates that (at least one real-time

process is in the Ready state), preempts the

current process if it is of lower priority than the

highest-priority real-time ready process

A real-time process has a fixed priority and a fixed

quantum

A time-sharing process has a variable priority and a

variable time (100ms for priority 0, 10ms for 59)

UNIX SVR4 Scheduling (cont.)

quantum

The priority is reduced every time the process

uses up the time quantum and is raised when the

process blocks on an event or resource

 The time quantum changes with the priority

SVR4 Priority Classes

Priority classes and levels
Real-time (159-100)

Guaranteed execution before kernel
or time-sharing processes
Preemption points can be used to
preempt kernel or user processes
Lowest-priority processes: user
applications other than real-time

Kernel (99-60)
Guaranteed execution before time-
sharing processes

Time-shared (59-0)
Lowest-priority processes: user
applications other than real-time

Figure (2) SVR4 Priority Classes

SVR4 Priority Classes

• Real-time class
 Soft real-time

capabilities are

needed for quality of

service sensitive

applications - video,

audio, multimedia,

virtual reality

 require bounded

dispatch latency, and

response time

 dispatch latency - time from the moment the process becomes

runnable to the moment it begins to run

 response time = interrupt processing + dispatch latency +

real-time process execution

SVR4 Priority Classes

• Time-sharing class

changes process priorities dynamically

 round-robin scheduling with the same priority

event driven scheduling

 reduces process priority each time it uses up

its time slice

 boosts the priority of the process if it blocks on

an event or resource, or if it takes a long time to

use up it quantum

CPU Scheduling

 The CPU is a resource that must be shared by all

processes. The part of the kernel that apportions CPU

time between processes is called the scheduler. The

traditional UNIX scheduler uses preemptive round-robin

scheduling. Processes of equal priority are scheduled in

a round-robin manner, each running for a fixed quantum

of time(typically 100 milliseconds).

 If a higher priority process becomes runnable, it will

preempt the current process (unless the current process

is running in kernel mode), even if the current process

has not used up its time quantum. In traditional UNIX

systems, the process priority is determined by two

factors-the nice value and the usage factor.

CPU Scheduling

 When a process receives some CPU time, the kernel

reduces its priority. This scheme prevents starvation of

any process, since eventually the priority of any process

that is waiting to run will rise high enough for it to be

scheduled. A process executing in kernel mode may

relinquish the CPU if it must block for a resource or event.

When it becomes runnable again, it is assigned a kernel

priority.

 In 4.3BSD, for instance, the kernel priorities range from 0

to 49, and user priorities from 50 to 127. While user

priorities vary with CPU usage, kernel priorities are fixed,

and depend on the reason for sleeping. Because of this,

kernel priorities are also known as sleep priorities. Table

2-2 lists the sleep priorities in 4.3BSD UNIX.

