
5

NAME : Omran Salem Buozarebah

ID : 163110466

TinyOs

OUTLINE

TinyOS is a free and open source component-

based operating system and platform targeting

wireless sensor networks.

TinyOS is an embedded operating system written in

the nesC programming language as a set of

cooperating tasks and processes.

TINYOS was developed primarily for use with

networks of small wireless sensor.

A number of trends have enabled the development

of extremely compact, low-power sensors.

Smaller size in turn reduces power consumption.

Low power and small size treads are also clear in

wireless communication hardware, micro-electrical

sensors (MEMS) and transducers.

 Allow high Synchronization: Several different flows of data must be

kept moving Synchronization, In addition external controls from

remote sensors or base stations must be managed.

 Operate with limited resources: A single platform may offer only

kilobytes of program memory and hundreds of bytes of RAM.

 Be robust: Once deployed, a sensor network must run unattended for

months or years Ideally, there should be redundancy both within

a single system and across the network of sensors.

 Adapt to hardware evolution: it should be possible to

upgrade the hardware with little or no software change, if

the functionality is the same.

 Support a wide range of applications: Applications show a

wide range of requirements in terms of lifetime,

communication, sensing, and so on.

 Support a diverse set of platforms: As with the past point, a

general-purpose embedded OS is desirable.

An embedded software system built using TinyOS

consists of a set of small modules called components,

each of which performs a simple task or set of tasks and

which interface with each other and with hardware in

limited and well-defined ways. The only other software

module is the scheduler.

To meet the demanding software requirements of this

application, a rigid, simplified software architecture is

dictated, consisting of components. The TinyOS

development community has implemented a number of

open-source components that provide the basic

functions needed for the WSN application.

Within a component, tasks are atomic:

1- Once a task has started it runs to completion, It cannot

be preempted.

2- another task in the same component, and there is no

time slicing.

However, a task can be preempted by an event. A task

cannot block or spin wait.

• It is a non-blocking requests.

• A command is typically a request for the lower-

level component to perform some service, such

as initiating a sensor reading.

In TinyOS may be tied either directly or indirectly

to hardware events, The lowest level software

components interface directly to hardware

interrupts, which may be external interrupts, timer

events, or counter events.

An event handler in a lowest level component may

handle the interrupt itself or may propagate event

messages up through the component hierarchy.

 Dedicated

A resource that a subsystem needs exclusive access at all times.

 Virtualized

The virtualized abstraction may be used when the underlying

resource need not be protected by mutual exclusion.

 Shared

The shared resource abstraction provides access to a dedicated

resource through an arbiter component. The arbiter enforces

mutual conclusion allowing only the user at a time to have

access to a resource and enabling the client to lock the

resource.

Resource: The client issues a request at this

interface requesting access to the resource.

Resource Requested: This is similar to the

Resource interface.

In this case, the client is able to hold onto a

resource until the client is notified that

someone else needs the resource.

Resource Configure: This interface allows a

resource to be automatically configured just

before a client is granted access to it.

Resource-specific interfaces: Once a client has

access to a resource, it uses resource-specific

interfaces to exchange data and control

information with the resource.

