

• The most basic abstraction provided by an operating
system.

• A process is an executable object located at physical
memory pages.

• Contains specific memory segments with executable
instructions, stack space, data space, and other
components needed for execution.

• Each process is identified uniquely with a positive
integer number named PID.

• Solaris is a multi thread operating system

• every tasks performed by operating system are
execute like kernel threads.

• User threads are created in order to execute user
processes, these user threads are created with a
lightweight process or LWP linked to it..

• LWP is a kernel object which lets user threads enter
to the kernel and execute by themselves.

• Despite user LWP and kernel LWP have different
structures, they are so integrated that can be seen
like an unique execution entity.

• Process state is represented as a set of bits used by
the kernel for process managing. From the process’
“point of view” kernel puts all the execution
resources in a virtual machine for its execution.

• Kernel maintains a process structure named proc_t for
each process in the system; proc_t contains and
references all the process state data, is located at kernel
address space and has restricted access.

• Every process starts from an executable disk file. A
process image is loaded in memory by the kernel for its
execution. This happens when a fork() system call is
called. A PID is assigned to the recently created process.
The process who called fork() is named parent process,
and the new process is named child process.

• A process can be ended due to:

·The process calls exit() system call, and all its threads end.

· Function abort() is called, which sends a SIGABRT signal
to the .process.

· The process ends its execution normal.

• In all of the previous cases exit() kernel function is
executed, this function frees all the resources assigned
to the process, and set process’ status to zombie. A
zombie process needs that its parent calls wait() system
call, which captures exit status of its child process, and
frees its entry from process table.

Processes:
• Virtual address space
• Protected access to processors, other process, files and I/O

resources
• suspension and termination

Threads:
• execution state
• save context
• an execution stack
• some per-thread static storage
• access to the memory and resources of its process, shared with

other threads of the process

• consists of listing active processes (PS command)

• terminating processes (kill command) .

• changing the execution priority of a process (nice
and priocntl commands).

• Processes are represented in a treelike fashion by
the process number in the /procpseu do file system.

• Most processes are associated with a terminal, a
process without a terminal is called a Daemon.

• A child process is a process started and controlled
by another process.

• A zombie process is a process that have hung,
usually it’s a child process who's parent process has
terminated without cleaning up after itself.

apptrace for tracing library calls

dtrace debugger, new in version 10

pargs get list of arguments and environment variables with
which process was started

pfiles list of file descriptors, associated with process

pgrep get the PID's of processes by name i.e. Something like PS
-efl|grep -v grep|grep process name

pkill send signal to process. For example pkill -9 in it :-P

pldd – list dynamic libraries, associated with process, similar
to ldd for executable

plockstat see list of locked by process files. Lock can be mutex i.e.
exclusive and reader/writer for shared access

pmap – get memory map (segments) of process

preap try to kick-off zombie process

prstat Full screen view of processes sorted by different criteria, similar to
Linux top command

prun Continue hold with pstop process

PS Print process information and status. In Solaris exist SYSV and BSD
variants, respectively /usr/bin/PS and /usr/ucb/PS

psig List signals that can be handled by process

pstack Get back trace stack of process for debugging purposes

pstop Temporary hold process

ptree Print the tree of processes

pwait Wait till process finish

pwdx List working directory for process, like pwd command

truss For tracing user/library/system calls and signals

User-level threads:

• Thread management is internal to the process

• The kernel is unaware of their existence.

• A threads library provides code for thread management
needs of the process.

Kernel level threads:

• Management of threads is done entirely at the kernel
level

• An application programming interface is provided for
thread creation, termination and synchronization

