
Layth Rafea Hazim

Submitted to:

Prof. Dr. Hasan Huseyin Balik

Solaris CPU Scheduling

■ Introduction to the Scheduler

■ CPU Share Definition

■ CPU Shares and Process State

■ CPU Share Versus Utilization

■ CPU Share Examples

■ FSS Configuration

■ FSS and Processor Sets

■ Priority Model

■ Combining FSS With Other Scheduling Classes

■ Commands Used With FSS

Outline

 Solaris is a Unix operating system originally developed by Sun

Microsystems. It superseded their earlier SunOS in 1993. Oracle Solaris, so

named as of 2010, has been owned by Oracle Corporation since the Sun

acquisition by Oracle in January 2010 . Solaris supports SPARC-based

and x86-based workstations and servers from Oracle and other vendors,

with efforts underway to port to additional platforms .

 CPU SCHEDULING is a key concept in computer multitasking,

multiprocessing operating system and real-time operating system designs.

Scheduling refers to the way processes are assigned to run on the available

CPUs, CPU scheduling deals with the problem of deciding which of the

processes in the ready queue is to be allocated the CPU .

Abstract

https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Sun_Microsystems
https://en.wikipedia.org/wiki/SunOS
https://en.wikipedia.org/wiki/Oracle_Corporation
https://en.wikipedia.org/wiki/Sun_acquisition_by_Oracle
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/Workstation
https://en.wikipedia.org/wiki/Computer_server

 A fundamental job of the operating system is to arbitrate which processes get

access to the system's resources . The process scheduler, which is also called the

dispatcher, is the portion of the kernel that controls allocation of the CPU to

processes. The scheduler supports the concept of scheduling classes. Each class

defines a scheduling policy that is used to schedule processes within the class. The

default scheduler in the Solaris Operating System, the TS scheduler, tries to give

every process relatively equal access to the available CPUs.

 You can use the fair share scheduler (FSS) to control the allocation of available CPU

resources among workloads, based on their importance. This importance is

expressed by the number of shares of CPU resources that you assign to each

workload.

 The FSS consists of a kernel scheduling class module and class-specific versions

of the dispadmin and priocntl commands. Project shares used by the FSS are

specified through the project.cpu-shares property in the project database.

Introduction to the Scheduler

 The term “share” is used to define a portion of the system's CPU resources that

is allocated to a project .

 CPU shares are not equivalent to percentages of CPU resources. Shares are

used to define the relative importance of workloads in relation to other workloads.

When you assign CPU shares to a project, your primary concern is not the

number of shares the project has. Knowing how many shares the project has in

comparison with other projects is more important. You must also take into

account how many of those other projects will be competing with it for CPU

resources.

CPU Share Definition

Note –

Processes in projects with zero shares always run at the lowest system priority (0). These

processes only run when projects with nonzero shares are not using CPU resources.

CPU Shares and Process State
 In the Solaris system, a project workload usually consists of

more than one process. From the fair share scheduler

perspective, each project workload can be in either

an idle state or an active state.

• A project is considered idle if none of its processes are using any

CPU resources .

• A project is considered active if at least one of its processes is

using CPU resources.

 When more projects become active, each project's CPU

allocation is reduced, but the proportion between the

allocations of different projects does not change.

CPU Share Versus Utilization
 Share allocation is not the same as utilization. A project that

is allocated 50 percent of the CPU resources might average

only a 20 percent CPU use. Moreover, shares serve to limit

CPU usage only when there is competition from other

projects. Regardless of how low a project's allocation is, it

always receives 100 percent of the processing power if it is

running alone on the system. Available CPU cycles are never

wasted. They are distributed between projects.

 The allocation of a small share to a busy workload might slow

its performance. However, the workload is not prevented from

completing its work if the system is not overloaded.

CPU Share Examples
 Assume you have a system with two CPUs running two parallel CPU-

bound workloads called A and B, respectively. Each workload is

running as a separate project. The projects have been configured so

that project A is assigned SA shares, and project B is

assigned SB shares.

 On average, under the traditional TS scheduler, each of the workloads

that is running on the system would be given the same amount of

CPU resources. Each workload would get 50 percent of the system's

capacity .

 When run under the control of the FSS scheduler with SA=SB, these

projects are also given approximately the same amounts of CPU

resources. However, if the projects are given different numbers of

shares, their CPU resource allocations are different.

Example 1: Two CPU-Bound Processes in Each Project

If A and B each have two CPU-bound processes, and SA = 1 and SB = 3,

then the total number of shares is 1 + 3 = 4 . In this configuration, given

sufficient CPU demand, projects A and B are allocated 25 percent and 75

percent of CPU resources, respectively.

Example 2: No Competition Between Projects

If A and B have only one CPU-bound process each,

and SA = 1 and SB = 100, then the total number of shares is 101. Each

project cannot use more than one CPU because each project has only

one running process. Because no competition exists between projects

for CPU resources in this configuration, projects A and B are each

allocated 50 percent of all CPU resources. In this configuration, CPU

share values are irrelevant. The projects' allocations would be the same

(50/50), even if both projects were assigned zero shares.

If A and B have two CPU-bound processes each, and project A is given 1 share and

project B is given 0 shares, then project B is not allocated any CPU resources and

project A is allocated all CPU resources. Processes in B always run at system priority 0,

so they will never be able to run because processes in project A always have higher

priorities.

Example 3: One Project Unable to Run

Solaris recognizes 170 different priorities, 0-169. Within these priorities fall a

number of different scheduling classes:

Priority Model

Scheduling Class Range and Use

Timesharing (TS) Priorities in this class are dynamically adjusted based upon CPU utilization in an

attempt to allocate processor resources evenly. rang is (0-59) .

IA (interactive) This is an enhanced version of the TS class that applies to the in-focus window

in the GUI. range is (0-59) .

FSS (fair-share

scheduler)

This class is share-based rather than priority- based. range is (0-59) .

FX (fixed-priority) The priorities for threads associated with this class are fixed. range is (0-59) .

SYS (system) The SYS class is used to schedule kernel threads. Range is (60-99) .

RT (real-time) Threads in the RT class are fixed-priority, with a fixed time quantum. Range is

(100-159) .

Priority Model

Projects and Users

 Projects are the workload containers in the FSS scheduler. Groups of users

who are assigned to a project are treated as single controllable blocks. Note

that you can create a project with its own number of shares for an individual

user.

 Users can be members of multiple projects that have different numbers of

shares assigned. By moving processes from one project to another project,

processes can be assigned CPU resources in varying amounts.

FSS Configuration

Example FSS Configuration

 The configuration of CPU shares is managed by the name service as a

property of the project database.

 When the first task (or process) that is associated with a project is created

through the setproject(3PROJECT) library function, the number of CPU shares

defined as resource control project.cpu-shares in the project database is

passed to the kernel. A project that does not have the project.cpu-

shares resource control defined is assigned one share.

 In the following example, this entry in the /etc/project file sets the number of

shares for project x-files to 5:

x-files:100 : : : : : : project.cpu-shares=(privileged,5,none)

CPU Shares Configuration

https://docs.oracle.com/docs/cd/E19253-01/816-5172/setproject-3project/index.html

 If you alter the number of CPU shares allocated to a project in the database when

processes are already running, the number of shares for that project will not be

modified at that point. The project must be restarted for the change to become

effective.

 If you want to temporarily change the number of shares assigned to a project

without altering the project's attributes in the project database, use

the prctl command. For example, to change the value of project x-files's project.cpu-

shares resource control to 3 while processes associated with that project are

running, type the following:

prctl -r -n project.cpu-shares -v 3 -i project x-files

-r Replaces the current value for the named resource control.

-n name Specifies the name of the resource control.

-v val Specifies the value for the resource control.

-i idtype Specifies the ID type of the next argument.

x-files Specifies the object of the change. In this instance, project x-files is the object.

The maximum number of shares that can be assigned to one project is 65535.

 The FSS can be used in conjunction with processor sets to provide more

fine-grained controls over allocations of CPU resources among projects that

run on each processor set than would be available with processor sets

alone. The FSS scheduler treats processor sets as entirely independent

partitions, with each processor set controlled independently with respect to

CPU allocations .

 The number of shares allocated to a project is system wide.

 Project partitions that run on different processor sets might have different

CPU allocations .

 Empty processor sets (sets without processors in them) or processor sets

without processes bound to them do not have any impact on the FSS

scheduler behavior.

FSS and Processor Sets

Examples :

 Assume that a server with eight CPUs is running several CPU-bound

applications in projects A, B, and C. Project A is allocated one share,

project B is allocated two shares, and project C is allocated three shares.

 Project A is running only on processor set 1. Project B is running on

processor sets 1 and 2. Project C is running on processor sets 1, 2, and 3.

Assume that each project has enough processes to utilize all available CPU

power. Thus, there is always competition for CPU resources on each

processor set.

FSS and Processor Sets

The total system-wide project CPU allocations on such a system are shown in the

following table:

Project Allocation

Project A 4% = (1/6 X 2/8)pset1

Project B 28% = (2/6 X 2/8)pset1+ (2/5 * 4/8)pset2

Project C 67% = (3/6 X 2/8)pset1+ (3/5 X 4/8)pset2+ (3/3 X 2/8)pset3

These percentages do not match the corresponding amounts of CPU shares that are given to

projects. However, within each processor set, the per-project CPU allocation ratios are proportional

to their respective shares.

On the same system without processor sets, the distribution of CPU resources

would be different, as shown in the following table :

Project Allocation

Project A 16.66% = (1/6)

Project B 33.33% = (2/6)

Project C 50% = (3/6)

 Avoid having processes from these scheduling classes share the

same processor set. A mix of processes in the FSS, TS, IA, and FX classes

could result in unexpected scheduling behavior, because scheduling classes

are the same range .

 With the use of processor sets, can mix TS, IA, and FX with FSS in one system.

However, all the processes that run on each processor set must be

in one scheduling class, so they do not compete for the same CPUs.

 The FX scheduler in particular should not be used in conjunction with the FSS

scheduling class unless processor sets are used.

 The RT scheduling class uses system priorities in a different range than FSS.

Because RT and FSS are using disjoint, or non-overlapping, FSS can coexist

with the RT scheduling class within the same processor set.

 The FSS scheduling class does not have any control over processes that run in

the RT class .

Combining FSS With Other Scheduling Classes

For example, on a four-processor system, a single-threaded RT process can

consume one entire processor if the process is CPU bound. If the system also

runs FSS, regular user processes compete for the three remaining CPUs that are

not being used by the RT process. Note that the RT process might not use the CPU

continuously. When the RT process is idle, FSS utilizes all four processors.

You can type the following command to find out which scheduling classes the

processor sets are running in and ensure that each processor set is configured to

run either TS, IA, FX, or FSS processes:

$ ps -ef -o pset,class | grep -v CLS | sort | uniq

1 FSS

1 SYS

2 TS

2 RT

3 FX

Combining FSS With Other Scheduling Classes

The commands that are shown in the following table provide the primary

administrative interface to the fair share scheduler:

Commands Used With FSS

Command

Reference

Description

priocntl Displays or sets scheduling parameters of specified processes,

moves running processes into a different scheduling class.

ps Lists information about running processes, identifies in which

scheduling classes processor sets are running.

dispadmin Sets the default scheduler for the system. Also used to examine

and tune the FSS scheduler's time quantum value.

FSS Describes the fair share scheduler (FSS).

 http://docs.oracle.com/cd/E26502_01/pdf/E29024.pdf

 https://www.princeton.edu/~unix/Solaris/troubleshoot/schedule.html

 Solaris Internals

References

http://docs.oracle.com/cd/E26502_01/pdf/E29024.pdf
https://www.princeton.edu/~unix/Solaris/troubleshoot/schedule.html

THANK YOU FOR
ALL

Don’t

Worry

