
Kemerburgaz University
Istanbul, Turkey

Information Technology department

The project topic is:

Peterson’s algorithm semaphores implementation

Prepared By : Laila Gouma Bawendi

ID:163110443

OUTLINES

 what is Peterson’s algorithm.

 • Peterson’s General algorithms.

 • What is Semaphores.

 • Semaphores implementation.

 • Semaphore Implementation Busy waiting.

 • semaphores implementation for solving critical section

problem.

what is peterson’s algorithms ?

Peterson's algorithm (or Peterson's solution) is a concurrent

programming algorithm for mutual exclusion that allows two or

more processes to share a single-use resource without conflict,

using only shared memory for communication. It was formulated

by Gary L. Peterson in 1981. While Peterson's original

formulation worked with only two processes, the algorithm can

be generalized for more than two.

Peterson’s Solution

 The algorithm satisfies the three essential criteria to solve the critical
section problem, provided that changes to the variables turn, flag[0], and
flag[1] propagate immediately and atomically. The while condition works
even with preemption.

 The three criteria are mutual exclusion, progress, and bounded waiting.

 Since turn can take on one of two values, it can be replaced by a single bit,
meaning that the algorithms requires only three bits of memory.

Peterson’s General algorithms.

bool flag[2] = {F;F};
int turn;

 P0: flag[0] = true;

 P0_gate: turn = 1;

 while (flag[1] && turn == 1)

 {

 // busy wait

 }

 // critical section

 ...

 // end of critical section

 flag[0] = false;

P1: flag[1] = true;

P1_gate: turn = 0;

while (flag[0] && turn == 0)

{

// busy wait

}

// critical section

...

// end of critical section

flag[1] = false;

Semaphores

 A Semaphore S is an integer variable that, apart
from initialization, can only be accessed through 2
atomic and mutually exclusive.

 two main operations:

 wait (or acquire)

 signal (or release)

Busy Waiting Semaphores

 The simplest way to

implement

semaphores.

 Useful when critical

sections last for a

short time, or we have

lots of CPUs.

 S initialized to positive

value (to allow

someone in the

beginning).

wait(S):

while S<=0 do ;

S--;

signal(S):

S++;

Using semaphores for solving critical section
problems

 For n processes

 Initialize semaphore

“mutex” to 1

 Then only one process

is allowed into CS

(mutual exclusion)

 To allow k processes

into CS at a time,

simply initialize mutex

to k

Process Pi:

repeat

wait(mutex);

CS

signal(mutex);

RS

forever

Synchronizing Processes using Semaphores

 Two processes:

• P1 and P2

 Statement S1 in P1

needs to be

performed before

statement S2 in P2

 We want a way to

make P2 wait

• until P1 tells it is OK

to proceed

 Define a semaphore
“synch”

• Initialize synch to 0

 Put this in P2:

wait(synch);

S2;

 And this in in P1:

S1;

signal(synch);

Busy-Waiting Semaphores: Observations

 When S>0:

• the number of processes that can execute

wait(S) without being blocked = S

 When S=0: one or more processes are

waiting on S

 Semaphore is never negative

 When S becomes >0, the first process that

tests S enters enters its CS

• random selection (a race)

• fails bounded waiting condition

THANK YOU

