
MS Windows Concurrency Mechanisms
Prepared By

SUFIAN MUSSQAA AL-MAJMAIE
163103058

April 2017

Basic of Concurrency

In multiple processor system, it is possible not only to interleave

processes/threads but to overlap them as well. Both techniques can be

viewed as examples of concurrent processing and both present the

same problems such as in sharing (global) resources e.g. global

variables and in managing the allocation of resources optimally e.g. the

request use of a particular I/O channel or device. The following figure try

to describe the interleaving the processes. P stands for process and t is

time.

Figure 1: Interleave concept.

Figure 2: Process/thread Interleaving and

overlapping

Concurrency

• Management of concurrent activities in

Windows operating System

• Multiple applications in progress at the

same time, non-sequential operating

system activities

• Time sharing for interleaved execution

• Demands dispatching and

synchronization

• Parallelism: Actions are executed

simultaneously

• Demands parallel hardware

• Relies on a concurrent application

time

T
h
re

a
d

1

T
h
re

a
d

2

T
h
re

a
d

1

T
h
re

a
d

2

Core

Memory

C
o
re

C
o
re

Memory

Concurrency is Hard

• Sharing of global resources

• Concurrent reads and writes on the same variable makes order critical

• Optimal management of resource allocation

• Process gets control over a I/O channel and is then suspended before using it

• Programming errors become non-deterministic

• Order of interleaving may / may not activate the bug

• Happens all with concurrent execution, which means even on uniprocessors

• Race condition

• The final result of an operation depends on the order of execution

• Well-known issue since the 60‘s, identified by E. Dijkstra

Race Condition

• Executed by two threads on uniprocessor

• Executed by two threads on multiprocessor

• What happens ?

void echo() {

char_in =

char_out =

getchar();

char_in;

putchar(char_out);

}

This is a

„critical

section“

Terminology

• Deadlock

• Two or more processes / threads are unable to proceed

• Each is waiting for one of the others to do something

• Livelock

• Two or more processes / threads continuously change their states in response to

changes in the other processes / threads

• No global progress for the application

• Race condition

• Two or more processes / threads are executed concurrently

• Final result of the application depends on the relative timing of their execution

Potential Deadlock

I need quad

A and B

I need quad

B and C

I need quad

C and B

I need quad

D and A

Actual Deadlock

HALT until

B is free

HALT until

C is free

HALT until

D is free

HALT until

A is free

Terminology

• Starvation

• A runnable process / thread is overlooked indefinitely

• Although it is able to proceed, it is never chosen to run (dispatching / scheduling)

• Atomic Operation

• Function or action implemented as a sequence of one or more instructions

• Appears to be indivisible - no other process / thread can see an intermediate state

or interrupt the operation

• Executed as a group, or not executed at all

• Mutual Exclusion

• The requirement that when one process / thread is using a resource,

no other shall be allowed to do that

Critical Section

• n threads all competing to use a shared resource (i.e.; shared data, spaghetti forks)

• Each thread has some code - critical section - in which the shared data is accessed

• Mutual Exclusion demand

• Only one thread at a time is allowed into its critical section, among all threads that

have critical sections for the same resource.

• Progress demand

• If no other thread is in the critical section, the decision for entering should not be

postponed indefinitely. Only threads that wait for entering the critical section are

allowed to participate in decisions. (deadlock problem)

• Bounded Waiting demand

• It must not be possible for a thread requiring access to a critical section to be

delayed indefinitely by other threads entering the section. (starvation problem)

Critical Section

• Only 2 threads, T0 and T1

• General structure of thread Ti (other thread Tj)

• Threads may share some common variables to synchronize their actions

do {

enter section

critical section

exit section

reminder

} while (1);

section

Critical Section Protection with Hardware

• Traditional solution was interrupt disabling, but works only on multiprocessor

• Concurrent threads cannot overlap on one CPU

• Thread will run until performing a system call or interrupt happens

• Software-based algorithms also do not work, due to missing atomic statements

• Modern architectures need hardware support with atomic machine instructions

• Test and Set instruction -

read & write memory at once

• If not available, atomic swap

instruction is enough

• Busy waiting, starvation or

deadlock are still possible

#define LOCKED 1

int TestAndSet(int* lockPtr) {

int oldValue;

oldValue = SwapAtomic(lockPtr, LOCKED);

return oldValue;

}

function Lock(int *lock) {

while (TestAndSet (lock) == LOCKED);

}

16

„Manual“ implementation

of a critical section for

interleaved output

Binary and General Semaphores [Dijkstra]

• Find a solution to allow waiting processes

to ,sleep‘

• Special purpose integer called semaphore

• P-operation: Decrease value of its argument

semaphore by 1 as atomic step

• Blocks if the semaphore is already zero -

wait operation

• V-operation: Increase value of its argument

semaphore by 1 as atomic step

• Releases one instance of the resource

for other processes - signal operation

• Solution for critical section shared between N processes

• Binary semaphore has initial value of 1, counting semaphore of N

wait (S):

while

S--;

signal

S++;

(S <= 0);

// atomic

(S):

// atomic

do {

wait(mutex);

critical section

signal(mutex);

remainder section

} while (1);

Semaphores and Busy Wait

• Semaphores may suspend/resume threads to avoid busy waiting

• On wait operation

• Decrease value

• When value <= 0, calling thread is suspended and added to waiting list

• Value may become negative with multiple waiters

• On signal operation

• Increase value

• When value <= 0, one waiting thread is

woken up and remove from the waiting list

typedef struct {

int value;

struct thread *L;

} semaphore;

Shared Data Protection by Semaphores

References :

- http://www.tenouk.com
- https://computing.llnl.gov
- Modern Operating, 3rd ed., by Andrew Tanenbaum
- Operating System ConcSystemsepts, 7th ed., by Silbershatz, Galvin, &
Gagne

