
Process and Thread
Management
(Microsoft Vista and
Microsoft Windows 10)

Farah Sardouk, Msc Student in ECE

Student Number: 153101013

Kemerburgaz University

A process is an instance of the computer program that is created by OS to run your

Main program.

In Windows Vista processers are containers for the programs.

It Contains all the information to be

handled by the OS:
• Process ID, process group ID, user ID, and

group ID.

• Environment

• Scheduling Properties (priority, etc.).

• Program instructions

• Registers, Stacks

• File descriptors

• Signal actions

• Shared libraries

• Inter-process communication tools

shared memory , message queues,

semaphores , pipes,

What is a Process?

What’s New About Processes? (MS 10)

• Each process provides the resources needed to execute a

program.

• A process has:

a virtual address space, executable code, open handles to system

objects, a security context, a unique process identifier, environment

variables, a priority class, minimum and maximum working set sizes,

and at least one thread of execution.

• Each process is started with a single thread, often called the

primary thread, but can create additional threads from any of its

threads.

What is a Thread?
A thread is created by OS to run a stream of

instructions.

• Threads contain smaller set of information:

- Scheduling Properties

- Registers

- Stacks

- Signal actions

• Light-Weight

Most overhead accomplished through maintaining its

process.

- Exists within a process and uses the

process resources

- It has its own independent flow of control

(as long as its parent process exists and the OS

supports it)

- Duplicates only essential resources for

independent scheduling.

What’s New about Threads in Microsoft?

• A thread is the entity within a process that can be scheduled for execution.

• . All threads of a process share its virtual address space and system resources.

In addition, each thread maintains exception handlers, a scheduling priority, thread

local storage, a unique thread identifier, and a set of structures the system will use to

save the thread context until it is scheduled.

• The thread context includes the thread's set of machine registers, the kernel stack,

a thread environment block, and a user stack in the address space of the thread's

process. Threads can also have their own security context, which can be used for

impersonating clients.

• Microsoft Windows supports preemptive multitasking, which

creates the effect of simultaneous execution of multiple threads

from multiple processes. On a multiprocessor computer, the

system can simultaneously execute as many threads as there are

processors on the computer.

Jobs

Jobs: A job object allows groups of processes to be

managed as a unit.

Job objects are namable, securable, sharable objects

that control attributes of the processes associated with

them.

Operations performed on the job object affect all

processes associated with the job object.

All process threads created in the process will also

be in the job.

Problems: one process can be in one job, there will

be a conflict if many jobs attempt to manage the same

process.

Fibers

A fiber is a unit of execution that must be manually scheduled by the

application. Fibers run in the context of the threads that schedule them.

Fibers are created by allocating a stack and a user-mode fiber data structure

for storing registers. Fiber data can also be created independently of threads.

Fibers will not run until another running fiber in thread make explicitly call

SwitchToFiber.

Pros:

It is easier and takes fewer time to switch between fibers than switching

between threads.

Cons : It needs a lot of synchronization to make sure fibers do not interface

with each other.

Solution: create threads as much as processors to run them, and affinities the

threads to run only on a distinct set of available processors.

What’s New About Processes

and Threads?
Windows 7 and Windows Server 2008 R2 include the following new programming elements

for processes and threads.

New Capabilities

The 64-bit versions of Windows 7 and Windows Server 2008 R2 support more than 64 logical

processors on a single computer. User-mode scheduling (UMS) is a lightweight mechanism

that applications can use to schedule their own threads.

The 64-bit versions of Windows 7 and Windows Server 2008 R2 and later versions of

Windows support more than 64 logical processors on a single computer. This functionality is

not available on 32-bit versions of Windows.

Systems with more than one physical processor or systems with physical processors that

have multiple cores provide the operating system with multiple logical processors. A logical

processor is one logical computing engine from the perspective of the operating system,

application or driver. A core is one processor unit, which can consist of one or more logical

processors. A physical processor can consist of one or more cores. A physical processor is

the same as a processor package, a socket, or a CPU.

Jobs And Fibers

Summary

User And Kernel Thread

User and Kernel Thread
1- User Threads:

• User threads are supported at the user level.

The kernel is not aware of user threads.

• A library provides all support for thread

creation, termination, joining, and scheduling.

• There is no kernel intervention, and, hence,

user threads are usually more efficient.

• Unfortunately, since the kernel only recognizes

the containing process (of the threads), if one

thread is blocked, every other threads of the same

process are also blocked because the containing

process is blocked.

User and Kernel Threads

2- Kernel threads

• Kernel threads are directly supported by the
kernel. The kernel does thread creation,
termination, joining, and scheduling in kernel
space.

• Kernel threads are usually slower than the user
threads.

• However, blocking one thread will not cause other
threads of the same process to block. The kernel
simply runs other threads.

• In a multiprocessor environment, the kernel can
schedule threads on different processors.

Process creation

• Automatically by the system:

- System initialization

- Application and background process

• By another process

- A system call for process creation

- Context: A process needs some computation

- An user request (by command or interact with an icon)

1 Convert from Win32 pathname to NT pathname

2 Open EXE and create Section object.

3 Create Process object.

4 Create Thread object.

Implementation of Processes and Threads

A new process is created when another process make a Win32 CreateProcess call.

There are 5 steps in creating a new process:

Checking5

4

Process Creation(Continue)

New Child Processes are created by another process

(the Parent Process) at system boot time.

What’s new about Process Creation

The CreateProcess function creates a new process, which runs

independently of the creating process. However, for simplicity, the

relationship is referred to as a parent-child relationship.

If CreateProcess succeeds, it returns a PROCESS_INFORMATION

structure containing handles and identifiers for the new process and its

primary thread. The thread and process handles are created with full

access rights, although access can be restricted if you specify security

descriptors. When you no longer need these handles, close them by using

the CloseHandle function.

You can also create a process using the CreateProcessAsUser or

CreateProcessWithLogonW function. This allows you to specify the

security context of the user account in which the process will execute.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms682425(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682425(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684873(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724211(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682429(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682431(v=vs.85).aspx

Scheduling

Windows schedules threads, not processes.

The Scheduler is called when:

An I/O operation completes

specified waiting time expires

Scheduling is preemptive, priority-based, and round-robin at

the highest priority

Processes/Threads can specify affinity mask to run only on

certain processors:

SetProcessAffinityMask(),

SetThreadAffinityMask(), …

Scheduling in Microsoft Windows

Windows Server 2008, Windows Vista, Windows Server 2003 and

Windows XP: Processor groups are not supported.

When the system starts, the operating system creates processor

groups and assigns logical processors to the groups. If the system is

capable of hot-adding processors, the operating system allows space

in groups for processors that might arrive while the system is running.

The operating system minimizes the number of groups in a system.

For example, a system with 128 logical processors would have two

processor groups with 64 processors in each group, not four groups

with 32 logical processors in each group.

Scheduling Algorithm

Threads are scheduled to run based on their scheduling priority.

Each thread is assigned a specific scheduling priority.

The priority levels range from zero (lowest priority) to 31 (highest priority),

correspondingly associated with 32 queues.

Base priority (of a thread) = F(priority class, priority level) = constant.

Dynamic priority = Base priority + Boost Amount, is used to determine which

thread to execute.

Scheduling Algorithm

The system treats all threads with the same priority

equally.

The system assigns time slices in a round-robin fashion

to all threads with the highest priority.

If none of these threads are ready to run, the system

assigns time slices in a round-robin fashion to all

threads with the next highest priority.

If a higher-priority thread becomes available to run,

the system ceases to execute the lower-priority thread

(without allowing it to finish using its time slice), and

assigns a full time slice to the higher-priority thread.

Scheduling

References

http://softwareblogs.intel.com/2006/10/19/why-

windows-threads-are-better-than-posix-threads/

https://msdn.microsoft.com/en-

us/library/windows/desktop/ms682661(v=vs.85).aspx

https://msdn.microsoft.com/en-

us/library/windows/desktop/ms684161(v=vs.85).aspx

https://msdn.microsoft.com/en-

us/library/windows/desktop/ms681917(v=vs.85).aspx

https://msdn.microsoft.com/en-

us/library/windows/desktop/ms681917(v=vs.85).aspx

http://softwareblogs.intel.com/2006/10/19/why-windows-threads-are-better-than-posix-threads/
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682661(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684161(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681917(v=vs.85).aspx

Thanks For

Listening

Thank You!
By Farah Sardouk

