
MS SERVER 2016

PROCESSES AND THREADS

MANGMENT

Asaad Qasim Shareef
163109042

Introduction

 Windows Server has powered a generation of

organizations, from small businesses to large enterprises.

No matter what your role in IT, you can be guaranteed

you that have touched Windows. The mechanics of

performing a live migration are the same as they were in
previous versions of.

The Windows process management

mechanisms:

 Windows creates processes in one-step by using Create

Process. In Windows, there is no need to execute the

process after its creation as it will already be executing

the new code. However, the standard exec functions

are still available in Windows.

There are three ways to carry out the
process:

 1- Use Hyper-V Manager on the host

 2- Create a script in Windows PowerShell

 3- Use Virtual Machine Manager (not included

as part of Windows Server)

process management

process management topics

 Creating a New Process

 Replacing a Process Image (exec)

 Retrieving Process Information

 Waiting for a Spawned Process

 Processes vs. Threads

 Managing Process Resource Limits

 Limiting File I/O When Using Windows

 Process Accounting

 Managing and Scheduling Processes

Creating a New Process

the CreateProcess function enables the parent process to create an operating
environment for a new process. The CreateProcess function creates a new process and
its primary thread. For example by using a (spawn) function from the standard C runtime
library we can port this code to Windows for a process using (CreateProcess) :

#include <Windows.h>

#include <process.h>

#include <stdio.h>

void main()

{

STARTUPINFO si;

PROCESS_INFORMATION pi;

GetStartupInfo(&si);

printf("Running Notepad with CreateProcess\n");

CreateProcess(NULL, "notepad", // Name of app to launch

NULL, // Default process security attributes

NULL, // Default thread security attributes

FALSE, // Don't inherit handles from the parent

0, // Normal priority

NULL, // Use the same environment as the parent

NULL, // Launch in the current directory

&si, // Startup Information

&pi); // Process information stored upon return

printf("Done.\n");

exit(0);

}

Thread Management

A thread is an independent path of execution in a process

that shares the address space, code, and global data of the

process. Time slices are allocated to each thread based on

priority. Threads consist of an independent set of registers,

stack, I/O handles, and message queue.

Threads can usually run on separate processors on

multiprocessor computers. Windows enables you to assign

threads to a specific processor on a multiprocessor hardware

platform.

concept of threads

This section introduces the concept of threads. The following sections discuss
the Windows APIs in managing threads:

 Creating a Thread

 Canceling a Thread

 Synchronization of Threads

 Thread Attributes

 Thread Scheduling and Prioritizing

 Managing Multiple Threads

 I/O Completion Ports

Thread diagram

Creating a Thread

threads are created using the CreateThread function, which requires:

 The stack size of the thread.

 The security attributes of the thread.

 The address at which to begin execution of a procedure.

 A pointer to a variable to be passed to the thread.

 Flags that control the creation of the thread.

 An address to store the system-wide unique thread identifier.

After a thread is created, the thread identifier can be used to manage the thread
(like get and set the priority of thread) until it has terminated. The next example
demonstrates how you should use the CreateThread function to create a single
thread.

Windows example: Creating a single thread

#include <Windows.h>

#include <stdio.h>

#include <stdlib.h>

char message[] = "Hello World";

DWORD WINAPI thread_function(LPVOID arg)

{

printf("thread_function started. Arg was %s\n",

(char *)arg);

Sleep(3000);

strcpy(message, "Bye!");

return 100;

}

void main()

{

HANDLE a_thread;

DWORD a_threadId;

DWORD thread_result;

// Create a new thread.

a_thread = CreateThread(NULL, 0, thread_function,

(LPVOID)message, 0,

&a_threadId);

if (a_thread == NULL)

{

perror("Thread creation failed");

exit(EXIT_FAILURE);

}

printf("Waiting for thread to finish...\n");

if (WaitForSingleObject(a_thread, INFINITE)

!= WAIT_OBJECT_0)

{

perror("Thread join failed");

exit(EXIT_FAILURE);

}

// Retrieve the code returned by the thread.

GetExitCodeThread(a_thread, &thread_result);

printf("Thread joined, it returned %d\n",

thread_result);

printf("Message is now %s\n", message);

exit(EXIT_SUCCESS);

}

summary

 Each process provides the resources needed to execute a program.

 A process has a virtual address space, executable code, open handles to system objects, a
security context, a unique process identifier, environment variables, a priority class, minimum
and maximum working set sizes, and at least one thread of execution.

 A thread is the entity within a process that can be scheduled for execution.

 All threads of a process share its virtual address space and system resources.

 Microsoft Windows supports preemptive multitasking, which creates the effect of simultaneous
execution of multiple threads from multiple processes.

 A job object allows groups of processes to be managed as a unit. Job objects are namable,
securable, sharable objects that control attributes of the processes associated with them.

 An application can use the thread pool to reduce the number of application threads and
provide management of the worker threads.

 Applications can queue work items, associate work with waitable handles, automatically queue
based on a timer, and bind with I/O.

References

 https://blogs.microsoft.com/microsoftsecure/2015/10/07/whats-new-with-

microsoft-threat-modeling-tool-2016/

 https://technet.microsoft.com/en-us/library/bb497007.aspx

 www.buyya.com/microkernel/chap5.pdf

 https://www.d.umn.edu/~gshute/os/processes-and-threads.xhtml

 http://www.informit.com/articles/article.aspx?p=362660

https://blogs.microsoft.com/microsoftsecure/2015/10/07/whats-new-with-microsoft-threat-modeling-tool-2016/
https://technet.microsoft.com/en-us/library/bb497007.aspx
http://www.buyya.com/microkernel/chap5.pdf
https://www.d.umn.edu/~gshute/os/processes-and-threads.xhtml

