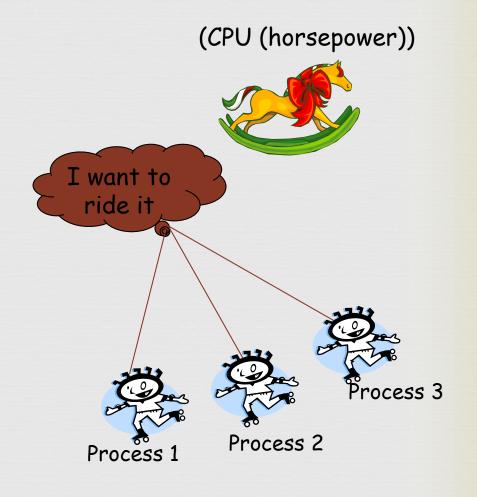


MS SERVER 2016 CPUSCHEDULING

NAME : KHADIJA IBRAHIM ALMUJRAB ID NUMBER: 163104461

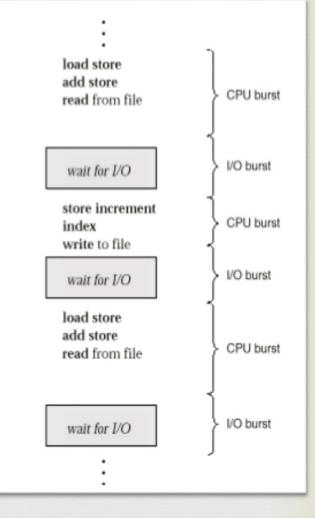
Supervisor : Prof .Dr. Hasan H. Balik

Outline

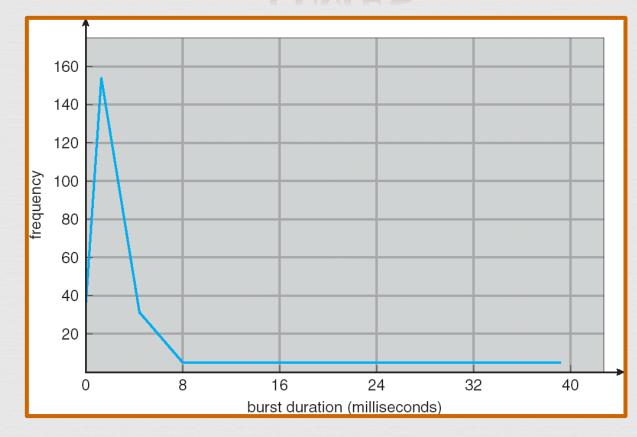

- Introduction
- CPU-I/O Burst Cycle
- Dispatcher VS Scheduler
- Preemptive and Non preemptive
- Scheduling Criteria
- Scheduling Algorithms
 - First Come, First Served (FCFS)
 - Round Robin (RR)
 - Multilevel Feedback Queue Scheduling
- Advantages and Disadvantages
- Conclusion
- References

INTRODUCTION

CPU scheduling : it is determining which processes run when there are multiple runnable processes .

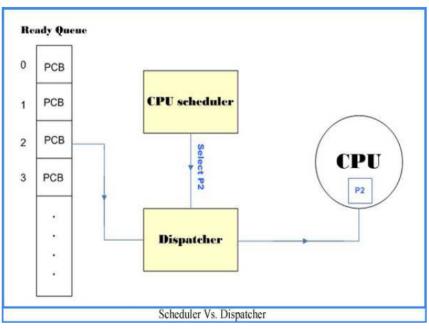

The aim of CPU scheduling is to make the system efficient, fast and fair.

It is important Because it can have a big effect on resource utilization and the overall performance of the system .



CPU-I/O BURST CYCLE

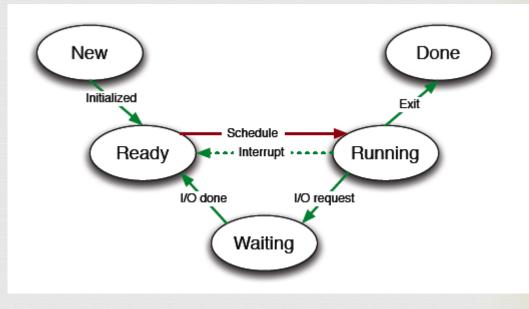
- Process execution consists of a cycle of CPU execution and I/O wait.
- Process execution start with a CPU burst.
- Each process repeatedly goes through cycles that alternate CPU execution (a CPU burst) and I/O wait .
- process execution will terminate in CPU.
- Usually, in a process execution, there are a large number of short CPU burst and a small number of long CPU burst .


HISTOGRAM OF CPU-BURST TIMES

It is characterized by a large number of short CPU bursts and a small number of long CPU bursts. An I/O-bound program typically has many short CPU bursts ; a CPU-bound program might have a few long CPU bursts .

DISPATCHER VS SCHEDULER

- Dispatcher : It is module gives control of the CPU to the process selected by the short-term scheduler; this involves:
 - switching context
 - switching to user mode
 - jumping to the proper location in the user program to restart that program.
 - The time it takes for the dispatcher to stop one process and start another process is called **dispatch latency**
- CPU Scheduler : Selects from among the processes in memory that are ready to execute, and allocates the CPU to one of them.
- There are three type of CPU scheduler :
 - Short-term scheduler
 - Medium-term scheduler
 - Long-term scheduler

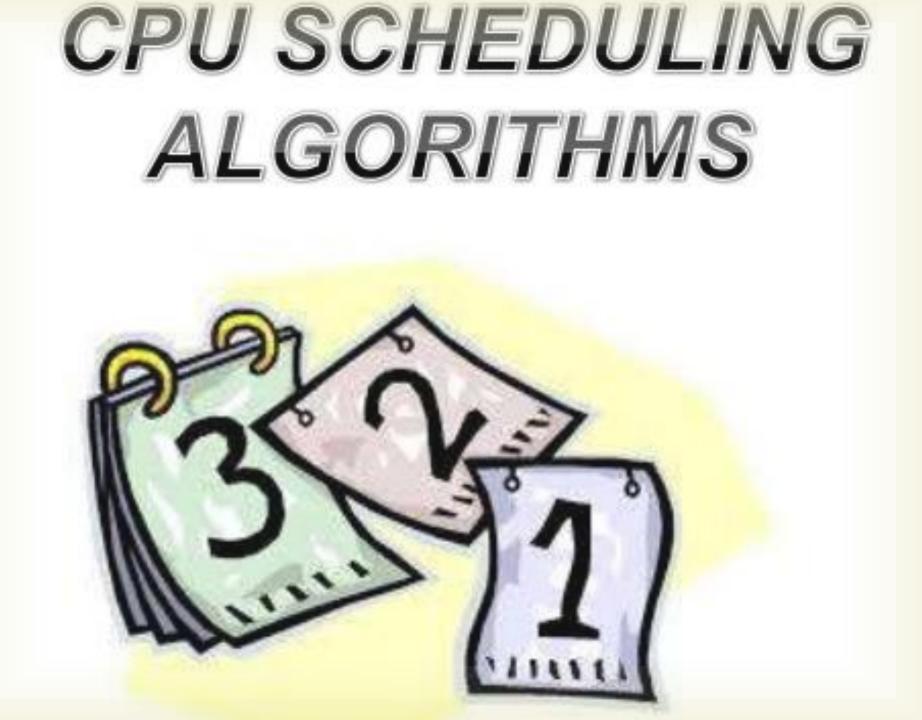

Preemptive Scheduling

Once Processor starts to execute a process it must finish it before executing the other.

Non Preemptive Scheduling

An interrupt causes currently running process to give up the CPU and be replaced by another process .

- CPU scheduling decisions may take place when a process:
 - **1**. Switches from running to waiting state
 - 2. Switches from running to ready state
 - 3. Switches from waiting to ready
 - 4. Terminates
- Scheduling under 1 and 4 is non preemptive
- All other scheduling is preemptive


SCHEDULING CRITERIA

- Criteria for comparing CPU scheduling algorithms may include the following :
 - **CPU utilization** keep the CPU as busy as possible .
 - Throughput number of processes that are completed per time unit .
 - **Response time** amount of time it takes from when a request was submitted until the first response occur .
 - Waiting time –the amount of time a process has spent waiting in the ready queue .
 - **Turnaround time** amount of time to execute a particular process from the time of submission to the time of completion

OPTIMIZATION CRITERIA

- It is desirable to
 - Maximize CPU utilization
 - Maximize throughput
 - Minimize response time
 - Minimize waiting time
 - Minimize turnaround time

In other cases, it is more important to <u>optimize</u> the <u>minimum</u> or <u>maximum</u> values rather than the average

FIRST-COME, FIRST-SERVED (FCFS)

- With FCFS the process that requests the CPU first is allocated the CPU first
- Suppose that the processes arrive in the order: P1, P2, P3

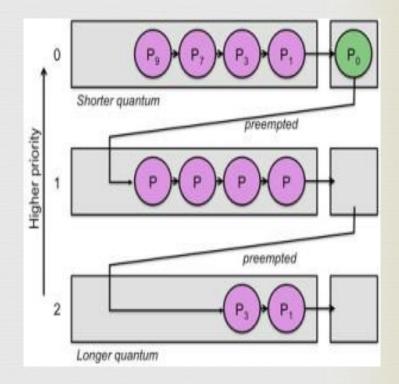
Process	Burst Time
P_1	12
P_2	3
P_3	3

The Gantt Chart for the schedule is:

- Waiting time for $P_1 = 0$; $P_2 = 12$; $P_3 = 15$
- Average waiting time: (0 + 12+ 15)/3 = 9
- Average turnaround time: (12+ 15+ 18)/3 = 15

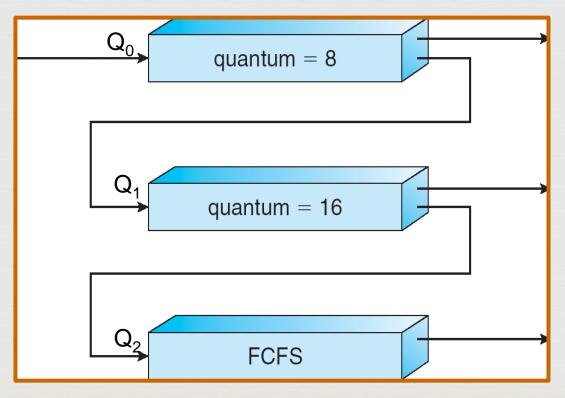
ROUND ROBIN (RR)

Each process gets a small unit of CPU time (a *time quantum*), usually 10-100 milliseconds. After this time has elapsed, the process is preempted and added to the end of the ready queue.


Example of RR with											~2)	
Time				Process			Burst Time					
Quantum = 20			P_1				53		T			
= 20					P_2			17				
				1	D 3			68				
 The Gantt chart is: 			j	P ₄		24						
	P ₁	P_2	P_3	P_{4}	P_1	P_3	P_{A}	P_1	P ₃	P_3		

Э

Τ


MULTILEVEL FEEDBACK QUEUE

- Partitions the ready queue into several separate queues.
- A process can move between the various queues; aging can be implemented this way.
- It is defined by the following parameters:
 - Number of queues.
 - Scheduling algorithms for each queue
 - Method used to determine when to promote a process.
 - Method used to determine when to <u>demote</u> a process.
 - Method used to determine which queue a process will enter when that process needs service.

EXAMPLE OF MULTILEVEL FEEDBACK QUEUE

- A new job enters queue Q₀ (RR) and is placed at the end. When it gains the CPU, the process receives 8 milliseconds. If it does not finish in 8 milliseconds, the process is moved to the end of queue Q₁.
- A Q₁ (RR) process receives 16 milliseconds. If it still does not complete, it is preempted and moved to queue Q₂ (FCFS).

ADVANTAGES AND DISADVANTAGES

Algorithms	Advantages	Disadvantages
FCFS	 Simple Fair Easy to understand and implement . 	 Waiting time depends on arrival order . short processes stuck waiting for long process to complete
RR	 Fair (Each process gets a fair chance to run on the CPU). Low average wait time, when burst times vary. Faster response time. 	 Increased context switching . High average wait time, when burst times have equal lengths.
MLFQ	- process that waits too long in a lower priority queue may be moved to a higher priority queue.	- Moving the process around queue produce more CPU overhead.

CONCLUSION

- Scheduling: selecting a waiting process from the ready queue and allocating the CPU to it.
- Purpose of Scheduling
 - Make maximum use of CPU time .
 - Make maximum use of resources such as input-output devices .
 - Avoid 'deadlock
- FCFS scheduling Run Until Done.
- ✤ RR scheduling:
 - Give each queue a small amount of CPU time when it executes, and cycle between all ready queue .
 - Better for short jobs, but poor when processes are the same length .
- Multi-Level Feedback Scheduling :
 - Multiple queues of different priorities
 - Automatic promotion/demotion of process priority to approximate SJF/SRTF

References

https://en.wikipedia.org/wiki/Scheduling_(computing)#Windows

https://www.ukessays.com/essays/computer-science/task-scheduling-basedon-multilevel-queue-scheduling-computer-science-essay.php

http://www.personal.kent.edu/~rmuhamma/OpSystems/os.html

http://www.studytonight.com/operating-system/cpu-scheduling

http://www.williamstallings.com/Extras/OS-Notes/h6.html

http://sciencehq.com/computing-technology/1353.html

Thanks a lot for everyone