
By

Mabruka Khlifa Karkeb
Student Id: 163103069

Prof. Dr. Hasan Hüseyin

Spring 2017

Department of Electrical And Computer Engineering

Istanbul , Turkey

ECE519 Advanced Operating Systems

Kernel Concurrency Mechanisms

Overview

What is Concurrency?

Reference

Linux Kernel Concurrency Mechanism

Causes of Concurrency

Linux Kernel Concurrency Mechanisms

Critical Sections

What is Kernel ?

oWhy do we update Kernel ?

What is Concurrency?
Concurrency is the tendency for things to happen at the

same time in a system. It is a natural phenomenon, of

course. In the real world, at any given time, many things

are happening simultaneously. When we design software

to monitor and control real-world systems, we must deal

with this natural concurrency.

Linux Kernel Cocurrency Mechanisms Linux Kernel Concurrency Mechanisms

Causes of Concurrency

 Pseudo concurrency .

 True concurrency .

Linux Kernel Concurrency Mechanisms

Sources of Concurrency

 Interrupts

 Softirqs and tasklets

 Kernel preemption

 Sleeping

 SMP

Linux Kernel Concurrency Mechanisms

What is Kernel ?
A kernel is a central component of an operating system.

It acts as an interface between the user applications and

the hardware.

The main tasks of the kernel are :

Process management

Device management

Memory management

Interrupt handling

I/O communication

File system...etc..

Linux Kernel Concurrency Mechanisms

Why do we update Kernel ?
The developers are modifying the Kernel, to improve the

way the devices are handled and the device is

disconnected, allowing better performance for these

devices and solving some problems such as heat up the

device.
V

Linux Kernel Concurrency Mechanisms

Critical Sections

A critical region is a section of code that is

always executed under mutual exclusion . It

shift the responsibility for enforcing mutual

exclusion from the programmer.

(where it resides when semaphores are used)

to the compiler.

Linux Kernel Concurrency Mechanisms

Critical Sections

Code that accesses shared resource.

Outline

Atomic Operations

Spinlocks

Semaphores

Barriers

Linux Kernel Concurrency Mechanism

Linux Kernel Concurrency Mechanisms

Kernel Synchronization Techniques

Linux Kernel Concurrency Mechanism

Linux includes all of the concurrency

mechanisms found in other UNIX systems, such

as SVR4, including pipes, messages, shared

memory, and signals. In addition , Linux 2.6

includes a rich set of concurrency mechanisms

specifically intended for use when a thread is

executing in kernel mode. That is, these are

mechanisms used within the kernel to provide

concurrency in the execution of kernel code.

Linux Kernel Concurrency Mechanisms

Linux Kernel Concurrency Mechanisms

Technique Description Scope

Per-CPU vars Each CPU has data All CPUs

Atomic operation Atomic operation All CPUs

Memory barrier Avoid re-ordering Local or All CPUs

Spin lock Lock w/ busy wait All CPUs

Semaphore Lock w/ sleep wait All CPUs

Seqlocks Lock on access ctr All CPUs

Interrupt disabling cli on a single CPU Local CPU

SoftIRQ disabling Forbid SoftIRQs Local CPU

Read-copy-update

(RCU)

Lock-free access to

shared data via ptrs.

All CPUs

Atomic Operations
• Linux provides a set of operations that

guarantee atomic operations on a variable.

These operations can be used to avoid simple

race conditions. An atomic operation

executes without interruption and without

interference.

Linux Kernel Concurrency Mechanisms

Type of Atomic

Operations
• Have Two types of atomic operations are

defined in Linux:

Integer
Operations

• Integer operations which operate on an integer
variable, typically used to implement counters.

Bitmap
Operations

• Bitmap operations which operate on one bit in a
bitmap. operate on one of a sequence of bits at an
arbitrary memory location indicated by a pointer
variable

Linux Kernel Concurrency Mechanisms

Type of Atomic

Operations

Integer
Operations

Bitmap
Operations

Linux Kernel Concurrency Mechanisms

ATOMIC_INIT (int i)At declaration: initialize an atomic_t to i

int atomic_read(atomic_t *v)Read integer value of v

void atomic_set(atomic_t *v, int i)Set the value of v to integer i

void atomic_add(int i, atomic_t *v)Add i to v

void atomic_sub(int i, atomic_t *v)Subtract i from v

void atomic_inc(atomic_t *v)Add 1 to v

void atomic_dec(atomic_t *v)Subtract 1 from v

void set_bit(int nr, void *addr)Set bit nr in the bitmap pointed to by addr

void clear_bit(int nr, void *addr)Clear bit nr in the bitmap pointed to by addr

void change_bit(int nr, void *addr)Invert bit nr in the bitmap pointed to by addr

int test_and_set_bit(int nr, void *addr)Set bit nr in the bitmap pointed to by addr;

return the old bit value

int test_and_clear_bit(int nr, void *addr)Clear bit nr in the bitmap pointed to by addr;

return the old bit value

Linux Kernel Concurrency Mechanisms

Spin Lock

The most common technique used for

protecting a critical section in Linux is the spinlock.

Only one thread at a time can acquire a spinlock. Any

other thread attempting to acquire the same lock will

keep trying (spinning) until it can acquire the lock. In

essence, a spinlock is built on an integer location in

memory that is checked by each thread before it

enters its critical section

Linux Kernel Concurrency Mechanisms

spin_lock(&lock)

/* critical section */

spin_unlock(&lock)

The basic form of use of a spinlock is the following:

Linux Kernel Concurrency Mechanisms

1. Disables kernel pre-emption.

2. Atomic test-and-sets lock.

3. If old value positive

Lock acquired.

4. Else

Enables pre-emption.

If break_lock is 0, sets to 1 to indicate a task is waiting.

Busy wait loop
while (spin_is_locked(lock))

cpu_relax(); # pause instruction on P4

Goto 1.

Spin Lock Functions

spin_lock_init(spinlock_t *lock)

Initialize spin lock to 1 (unlocked).

spin_lock(spinlock_t *lock)

Spin until lock becomes 1, then set to 0 (locked).

spin_lock_irqsave(spinlock_t *l, u flags)

Like spin_lock() but disables and saves interrupts.

Always use an IRQ disabling variant in interrupt context.

spin_unlock(spinlock_t *lock)

Set spin lock to 1 (unlocked).

spin_lock_irqrestore(spinlock_t *l, u flags)

Like spin_lock(), but restores interrupt status.

spin_trylock(spinlock_t *lock)

Set lock to 0 if unlocked and return 1; return 0 if locked.

Linux Kernel Concurrency Mechanisms

Read/Write Spinlocks

• Multiple readers can acquire lock simultaneously.

• Only one writer can have the lock at a time.

• Increase concurrency by allowing many readers.

• Example use: task list

Linux Kernel Concurrency Mechanisms

Linux Kernel Concurrency Mechanisms

Advantage And Disadvantage

The spinlock is easy to implement but has the

disadvantage that locked-out threads continue

to execute in a busy-waiting mode.

Spin Lock

Linux Kernel Concurrency Mechanisms

Semaphores
At the user level, Linux provides a semaphore

interface corresponding to that in UNIX SVR4.

Internally, Linux provides an implementation of

semaphores for its own use. That is, code that is part of

the kernel can invoke kernel semaphores. These kernel

semaphores cannot be accessed directly by the user

program via system calls. They are implemented as

functions within the kernel and are thus more efficient

than user-visible semaphores.

Linux Kernel Concurrency Mechanisms

Semaphores

Linux provides three types of semaphore facilities

in the kernel:

Types of semaphore

Binary semaphores.

Counting semaphores.

Reader-writer semaphores

Linux Kernel Concurrency Mechanisms

Linux Traditional Semaphores Functions

DECLARE_MUTEX(sem);

Static declares a mutex semaphore.

void init_MUTEX(struct semaphore *sem);

Dynamic declaration of a mutex semaphore.

void down(struct semaphore *sem);

Decrements semaphore and sleeps.

int down_interruptible(struct semaphore *sem);

Same as down() but returns on user interrupt.

int down_trylock(struct semaphore *sem);

Same as down() but returns immediately if not available.

void up(struct semaphore *sem);

Releases semaphore.

The reader-writer semaphore divides users into
readers and writers; it allows multiple concurrent
readers (with no writers) but only a single writer
(with no concurrent readers).

Linux Kernel Concurrency Mechanisms

Table shows the basic reader-writer semaphore operations

void init_rwsem(struct rw_semaphore,Initalizes the dynamically created semaphore with

*rwsem)a count of 1

void down_read(struct rw_semaphore, *rwsem)
Down operation for readers

void up_read(struct rw_semaphore, *rwsem)Up operation for readers

void down_write(struct rw_semaphore,Down operation for writers

*rwsem)

void up_write(struct rw_semaphore, *rwsem)Up operation for writers

Read/Write
Semaphores

Spin Locks vs Semaphores

 Spin Locks

 Busy waits waste CPU cycles.

 Can use in interrupt context, as does not sleep.

 Cannot use when code sleeps while holding lock.

 Use for locks held a short time.

 Semaphores

 Context switch on sleep is expensive.

 Sleeps, so cannot use in interrupt context.

 Can use when code sleeps while holding lock.

 Use for locks that held a long time.

Linux Kernel Concurrency Mechanisms

Linux Kernel Concurrency Mechanisms

Optimization Barriers

 Prevent compiler from re-ordering instructions.

 Compiler doesn’t know when interrupts or other
processors may read/write your data.

 Kernel provides barrier() macro.

Memory Barriers

 Read/write barriers prevent loads/stores from
being re-ordered across barrier.

 Kernel provides rmb(), wmb() macros.

All syncronization primitives act as barriers.

•http://www.linux-mag.com/id/2316/

Some Reference

•http://ww2.cs.fsu.edu/~stanovic/teaching/ldd_summer_2014/syllabus.ht

ml •Operating Systems INTERNALS AND DESIGN PRINCIPLES 7 EDITION By William

Stallings

Linux Kernel Concurrency Mechanisms

OUT OF SHOW

Up INDEX

Linux Kernel Concurrency Mechanisms

Critical Sections
1. No two processes may be simultaneously

inside their critical sections.

2. No assumptions may be made about speed

or number of CPUs.

3. No process running outside its critical

section may block other processes from

entering the critical section.

4. No process should have to wait forever to

enter its critical section.

Causes of Concurrency

 Pseudo concurrency :

Two things do not actually happen at the same

time but interleave with each other, which may be

caused by preemption or signal.

 True concurrency

A symmetrical multiprocessing machine, two

processes can actually be executed in a critical

region at the exact same time.

Linux Kernel Concurrency Mechanisms

Linux Kernel Concurrency Mechanisms

If lock “open”

Sets lock bit with atomic test-and-set.

Continues into critical section.

else lock “closed”

Code “spins” in busy wait loop until available.

Waits are typically much less than 1ms.

Kernel-preemption can run other processes while

task is busy waiting.

Linux Kernel Concurrency Mechanisms

spinlock_t
slock

Spin lock state.

1 is unlocked.

< 1 is locked.

break_lock
Flag signals that task is busy waiting for this lock.

Spin Lock State.

Linux Kernel Concurrency Mechanisms

Why do we need atomicity?

Process A

read i(7)

incr i(7 -> 8)

-

write i(8)

Process B

read i(7)

-

incr i(7 -> 8)

-

write i(8)

Problem: Two processes incrementing i.

A: read i(7)

A: incr i(7 -> 8)

B: read i(8)

B: incr i(8 -> 9)

Uniprocessor Version

Linux Kernel Concurrency Mechanisms

Atomicity doesn’t provide Ordering

Process A

atomic_inc i (7->8)

Process B
-

atomic_inc i (8->9)

One atomic order of operations:

Another atomic order of operations:

Process A

-

atomic_inc i (8->9)

Process B

atomic_inc i (7->8)

Linux Kernel Concurrency Mechanisms

Atomic Operations

Process A

atomic_inc i (7->8)

Process B
-

atomic_inc i (8->9)

Atomic operations are indivisible.

Provided by atomic_t in the kernel.

x86 assembly: lock byte preceding opcode makes atomic.

Atomic Operations

atomic_t guarantees atomic operations

atomic_t v;

atomic_t u = ATOMIC_INIT(0);

Atomic operations

atomic_set(&v, 4);

atomic_add(2, &v);

atomic_inc(&v);

printk(“%d\n”, atomic_read(&v));

atomic_dec_and_test(&v);

One writer or many readers can hold lock.

static DECLARE_RWSEM(my_rwsem);

down_read(&my_rwsem);

/* critical section (read only) */

up_read(&my_rwsem);

down_write(&my_rwsem);

/* critical section (read/write) */

up_write(&my_rwsem);

Linux Kernel Concurrency Mechanisms

Linux Semaphores

#include <asm/semaphore.h>

struct semaphore sem;

init_MUTEX(&sem);

if (down_interruptible(&sem))

return –ERESTARTSYS; /* user interrupt */

/*

* critical section

*/

up(&sem);

Linux Kernel Concurrency Mechanisms

Linux Kernel Concurrency Mechanisms

Semaphores

Down (P): Request to enter critical region.

If S > 0, decrements S, enters region.

Else process sleeps until semaphore is released.

Up (V): Request to exit critical region.

Increments S.

If S > 0, wakes sleeping processes.

Semaphores

If semaphore “open”

Task acquires semaphore.

else

Task placed on wait queue and sleeps.

Task awakened when semaphore released.

Linux Kernel Concurrency Mechanisms

Semaphores

Integer value S with atomic access.

If S>0, semaphore prevents access.

Using a semaphore for mutual exclusion:

down(S);

/* critical section */

up(S);

Linux Kernel Concurrency Mechanisms

Linux Kernel Concurrency Mechanisms

What is Kernel ?
The kernel is the central module of an operating system

(OS). It is the part of the operating system that loads

first, and it remains in main memory. Because it stays in

memory, it is important for the kernel to be as small as

possible while still providing all the essential services

required by other parts of the operating system and

applications.

