Linux(Fedora) I/O Management and Disk
Scheduling

Submitted by :
Rafid Faeq Ahmed st.no (163104081)

Email rafid.faeg@gmail.com

=y

mailto:rafid.faeq@gmail.com

=22 Operating System Design Issues
— 1/0 Management (Buffering)
— Disk Scheduling

=y

B
xﬁﬂ Goal: Generality

* For simplicity and freedom from error, it's better to handle

all 1/0 devices in a uniform manner
« Due to the diversity of device characteristics, it is difficult in

practice to achieve true generality

« Solution: use a hierarchical modular design of I/O functions

— Hide details of device I/O in lower-level routines

— User processes and upper levels of OS see devices in terms of

general functions, such as read, write, open, close, lock, unlock I

Fg/l‘“ 3

S{fp\ Model of I/O Organlzatlon

* Logical I/O:
— Deals with the device as a logical resource

— Allows user processes to deal with the device

and is not concerned with the details of
actually controlling the device

In terms of a device identifier and simple
commands such as open, close, read, write

 Device I/O:

— Converts requested operations into sequence

of I/O instructions

— Uses buffering techniques to improve

EEEEEE

utilization

j‘g,

(a) Local peripheral device

ssssss
3

« Scheduling and Control:

— Performs actual queuing / scheduling and

control operations
I'0

— Handles interrupts and collects and
reports /O status

— Interacts with the I/O module and hence
the device hardware

ardwa
(a) Local peripheral device

o LB

4
xﬁﬂ Goal: Efficiency

* Most I/O devices are extremely slow
compared to main memory

- 1/O operations often form a bottleneck
IN a computing system

* Multiprogramming allows some processes
to be waiting on I/O while another process

IS executing |

F;,r’“ 6

4
xﬁﬂ Goal: Efficiency

« Swapping brings in ready processes but
this is an I/O operation itself

* A major effort in I/O design has been
schemes for improving the efficiency of I/O

— 1/O buffering
— Disk scheduling

P

Q/gﬁ*

-2 1/0 Management (Buffering)

%%@ No Buffering
« Without a buffer, OS directly accesses the
device as and when it needs

« A data area within the address space of
the user process is used for I/O

Operating System User Process

/O Device In !] \l i > |

(a) No buffering

j‘g,

%%@ No Buffering
* Process must walit for I/O to complete
before proceeding
— busy waiting (like programmed 1/O)

— process suspension on an interrupt (like
interrupt-driven I/O or DMA)

e ®Problems

— the program is hung up waiting for the
relatively slow I/O to complete

— Interferes with swapping decisions by OS

j‘g,

10

Q%@ \ /O Buffering

* [t may be more efficient to perform input
transfers in advance of requests being
made and to perform output transfers
some time after the request is made.

ﬁ{ .

4
xﬁﬂ Block-oriented Buffering

* For block-oriented I/O devices such
as

—disks and
—USB drives

* Information is stored In fixed sized
blocks

* Transfers are made a block at a time
» Can reference data by block number E
12

j‘g,

@ﬁ’\ Stream-Oriented
®

=

Buffering

or stream-oriented 1I/O devices such as

— terminals

— printers

— communication ports

— mouse and other pointing devices, and

— most other devices that are not secondary

* Transfer information as a stream of bytes

storage

-

—

P

13

x»@\
\Eﬁ) Single Buffer
Q |

« OS assigns a buffer in the system portion
of main memory for an 1/O request

Operating System User Process

I/O Device In || > ll Move I > |

(b) Single buffering

=y

14

3
S\’m Double Buffer

* Use two system buffers instead of one

* A process can transfer data to or from one
buffer while OS empties or fills the other
buffer

Operating System User Process

1/O Device In @ Move i > |

(¢) Double buffering !
z ‘E g 15

3
%%@ Circular Buffer

 More than two buffers are used
 Each individual buffer is one unit in a circular

buffer
« Used when I/O operation must keep up with
process
* Follows the bounded-buffer producer/consumer
model Operating System User Process
1/O Device In Move S

; |_r (d) Circular huffering w0

=2 Disk Scheduling

17

@ﬁ’\ Disk Performance
& Parameters

* Currently, disks are at least four orders of
magnitude slower than main memory

- performance of disk storage subsystem is of
vital concern

* A general timing diagram of disk I/O transfer is

shown here.
Wait for Wait for Seek Rotational Data
Device Channel Delay Transfer
______________________ | |
IR EEEE; + . .
> Device Busy >

ﬁ{ Figure 11.6 Timing of a Disk I/O Transfer 18

@ﬁ’\ Disk Performance
& Parameters

e Access Time Is the sum of:

— Seek time: The time it takes to position the
head at the desired track

— Rotational delay or rotational latency: The
time it takes for the beginning of the sector to
reach the head

* Transfer Time is the time taken to transfer
the data (as the sector moves under the

head) E
=y 10

@ﬁ’\ Disk Performance
®

Parameters

 Total average access time T,
T,=T,+1/(2r)+ b/ (rN)
where T, = average seek time
b = no. of bytes to be transferred
N = no. of bytes on a track
I = rotation speed, in revolutions / sec.

 Due to the seek time, the order in which
sectors are read from disk has a

tremendous effect on I/O performance E

ﬁ{ ®

%ﬁ’ Disk Scheduling
& Policies

* To compare various schemes, consider a
disk head is initially located at track 100.

—assume a disk with 200 tracks and that the
disk request queue has random requests in It.

* The requested tracks, in the order
received by the disk scheduler, are

— 55, 58, 39, 18, 90, 160, 150, 38, 184. E

ﬁ{ -

v
xﬁ) First-in, first-out (FIFO)

track number

J

Process requests sequentially
Fair to all processes

May have good performance if most requests
are to clustered file sectors

Approaches random scheduling in performance
If there are many processes

0
25

50
75
100
125

- d
.l:wl) -
175 —
199 > 22

(a) FIFO Time

B
QS{}TA Last-In, first-out

« Good for transaction processing systems

— The device Is given to the most recent user so
there should be little arm movement for
moving through a sequential file

* Possibility of starvation since a job may
never regain the head of the line

P E

Ei%% Shortest Service
& Time First

« Select the disk I/O request that requires
the least movement of the disk arm from
Its current position

* Always choose the minimum seek time

0

25
5 50
)
g 75
S 100
2 125
150

175 '

199 > -
(b) SSTF Time

i =

®

SCAN

« Arm moves In one direction only, satisfying
all outstanding requests until it reaches the

last track In that direction then the

direction Is reversed
* LOOK policy: reverse direction when there

are no more requests in a direction
0

)]

e

track number

25

50

75
100
125
150
175
199

(¢} SCAN

Time

’.

2

25

R
Sm C-SCAN (Circular SCAN)

« Restricts scanning to one direction only

 When the last track has been visited in one
direction, the arm is returned to the opposite end
of the disk and the scan begins again

« Reduces the maximum delay experienced by

new requests

L—

P

0
.25
2 50
Z 75

£ 100
E 125
150
175
199

3

(d) C-SCAN

Comparison of Disk Scheduling Algorithms

{a}) FIFO (b} S8TF {c) SCAN {(d} C-SCAN
{starting at track 100} {starting at track 100} {starting at track 100, in the {starting at track 100, in the
direction of increasing rack direction of increasing track
number} number}
Next track Number of Next track Number of Next track Number of Nexttrack Number of
accessed tracks accessed tracks accessed tracks accessed tracks
traversed traversed traversed traversed
55 45 a0 10 150 50 150 30
58 3 38 32 160 10 160 10
349 1% 35 3 184 24 184 24
18 21 39 16 S0 o4 18 166
o0 12 38 1 58 32 38 20
160 10 18 20 35 3 39 1
1350 10 150 132 39 16 35 16
38 112 160 10 38 1 38 3
184 146 184 24 18 20 a0 32
Average seek 353 Average seek 2753 Average seek 278 Average seek 338
length length lengih length

27

Thank you

28

