
1

Linux(Fedora) I/O Management and Disk

Scheduling

Submitted by :

Rafid Faeq Ahmed st.no (163104081)
Email rafid.faeq@gmail.com

mailto:rafid.faeq@gmail.com

2

– Operating System Design Issues

– I/O Management (Buffering)

– Disk Scheduling

3

Goal: Generality

• For simplicity and freedom from error, it’s better to handle

all I/O devices in a uniform manner

• Due to the diversity of device characteristics, it is difficult in

practice to achieve true generality

• Solution: use a hierarchical modular design of I/O functions

– Hide details of device I/O in lower-level routines

– User processes and upper levels of OS see devices in terms of

general functions, such as read, write, open, close, lock, unlock

4

A Model of I/O Organization

• Logical I/O:

– Deals with the device as a logical resource

and is not concerned with the details of

actually controlling the device

– Allows user processes to deal with the device

in terms of a device identifier and simple

commands such as open, close, read, write

• Device I/O:

– Converts requested operations into sequence

of I/O instructions

– Uses buffering techniques to improve

utilization

5

A Model of I/O Organization

• Scheduling and Control:

– Performs actual queuing / scheduling and

control operations

– Handles interrupts and collects and

reports I/O status

– Interacts with the I/O module and hence

the device hardware

6

Goal: Efficiency

• Most I/O devices are extremely slow

compared to main memory

 I/O operations often form a bottleneck

in a computing system

• Multiprogramming allows some processes

to be waiting on I/O while another process

is executing

7

Goal: Efficiency

• Swapping brings in ready processes but

this is an I/O operation itself

• A major effort in I/O design has been

schemes for improving the efficiency of I/O

– I/O buffering

– Disk scheduling

8

–I/O Management (Buffering)

9

No Buffering

• Without a buffer, OS directly accesses the

device as and when it needs

• A data area within the address space of

the user process is used for I/O

10

No Buffering

• Process must wait for I/O to complete

before proceeding

– busy waiting (like programmed I/O)

– process suspension on an interrupt (like

interrupt-driven I/O or DMA)

• Problems

– the program is hung up waiting for the

relatively slow I/O to complete

– interferes with swapping decisions by OS

11

I/O Buffering

• It may be more efficient to perform input

transfers in advance of requests being

made and to perform output transfers

some time after the request is made.

12

Block-oriented Buffering

• For block-oriented I/O devices such
as

– disks and

– USB drives

• Information is stored in fixed sized
blocks

• Transfers are made a block at a time

• Can reference data by block number

13

Stream-Oriented

Buffering
• For stream-oriented I/O devices such as

– terminals

– printers

– communication ports

– mouse and other pointing devices, and

– most other devices that are not secondary

storage

• Transfer information as a stream of bytes

14

Single Buffer

• OS assigns a buffer in the system portion

of main memory for an I/O request

15

Double Buffer

• Use two system buffers instead of one

• A process can transfer data to or from one

buffer while OS empties or fills the other

buffer

16

Circular Buffer

• More than two buffers are used

• Each individual buffer is one unit in a circular

buffer

• Used when I/O operation must keep up with

process

• Follows the bounded-buffer producer/consumer

model

17

– Disk Scheduling

18

Disk Performance

Parameters
• Currently, disks are at least four orders of

magnitude slower than main memory

 performance of disk storage subsystem is of
vital concern

• A general timing diagram of disk I/O transfer is
shown here.

19

Disk Performance

Parameters
• Access Time is the sum of:

– Seek time: The time it takes to position the

head at the desired track

– Rotational delay or rotational latency: The

time it takes for the beginning of the sector to

reach the head

• Transfer Time is the time taken to transfer

the data (as the sector moves under the

head)

20

Disk Performance

Parameters
• Total average access time Ta

Ta = Ts + 1 / (2r) + b / (rN)

where Ts = average seek time

b = no. of bytes to be transferred

N = no. of bytes on a track

r = rotation speed, in revolutions / sec.

• Due to the seek time, the order in which
sectors are read from disk has a
tremendous effect on I/O performance

21

Disk Scheduling

Policies

• To compare various schemes, consider a

disk head is initially located at track 100.

– assume a disk with 200 tracks and that the

disk request queue has random requests in it.

• The requested tracks, in the order

received by the disk scheduler, are

– 55, 58, 39, 18, 90, 160, 150, 38, 184.

22

First-in, first-out (FIFO)

• Process requests sequentially

• Fair to all processes

• May have good performance if most requests
are to clustered file sectors

• Approaches random scheduling in performance
if there are many processes

disk arm

movement

23

Last-in, first-out

• Good for transaction processing systems

– The device is given to the most recent user so

there should be little arm movement for

moving through a sequential file

• Possibility of starvation since a job may

never regain the head of the line

24

Shortest Service

Time First
• Select the disk I/O request that requires

the least movement of the disk arm from

its current position

• Always choose the minimum seek time

25

SCAN

• Arm moves in one direction only, satisfying
all outstanding requests until it reaches the
last track in that direction then the
direction is reversed

• LOOK policy: reverse direction when there
are no more requests in a direction

26

C-SCAN (Circular SCAN)

• Restricts scanning to one direction only

• When the last track has been visited in one

direction, the arm is returned to the opposite end

of the disk and the scan begins again

• Reduces the maximum delay experienced by

new requests

27

Performance Compared

Comparison of Disk Scheduling Algorithms

28

Thank you

