
DHEYAULDEEN MAHMOOD

Student no. 163104411

Department: IT

Submit to Prof.Dr.Hassan Huseyin Balik

Linux (Fedora or Slackware) CPU Scheduling

Outline

• Introduction

• Linux Fedora

• CPU scheduler in Linux fedora

 CPU Scheduling
CPU scheduling is a process which allows one process to use the CPU
while the execution of another process is on hold(in waiting state)
due to unavailability of any resource like I/O etc, thereby making full
use of CPU. The aim of CPU scheduling is to make the system
efficient, fast and fair [1].

Why Scheduling?

Deciding which process/

thread should occupy the

resources (CPU, disk, etc)[2]

Introduction

 Scheduling Criteria Consisting of:

• CPU utilization make out the best use of CPU and not to waste any
CPU cycle.

• Throughput It is the total number of processes completed per unit
time.

• Turnaround time It is the amount of time taken to execute a
particular process.

• Waiting time The sum of the periods spent waiting in the ready
queue.

• Load average It is the average number of processes residing in the
ready queue waiting for their turn to get into the CPU.

• Response time Amount of time it takes from when a request was
submitted until the first response is produced.[3]

 CPU scheduling happen in Four cases?

1- A process switches from the running state to waiting state (e.g. I/O

request)

2- A process switches from the running state to the ready state.

3- A process switches from waiting state to ready state (completion of

an I/O operation)

4- A process terminates

 scheduling Objectives

1- Fairness

2- Priority

3- Efficiency Encourage good behavior

4- Support heavy loads

5- Adapt to different environments (interactive, real time, multi-media)

• Fedora is a Linux-based operating system that showcases the latest
in free and open source software from “ Red Hat” company.

• Fedora is always free for anyone to use, modify and distribute.

• It is built by people across the globe who work together

as a community: The Fedora Project

 Linux Fedora

 Linux Fedora CPU Scheduler
Although CPU has many sharing algorithms to dealing with
task scheduling in both Windows and Linux OS.There are
some algorithms have been designed to used uniquely by
Linux OS. For example :

• An O(n) scheduler was default in 2.4

• An O(1) scheduler was default in 2.6 before 2.6.23

• Completely Fair Scheduler is default scheduler since 2.6.23
onwards

• Brain Fuck Scheduler is a popular third-party scheduler
available as a set of patches

• Earliest Deadline-first scheduler is available since 3.14
designed for real-time workload[4]

Since Kernel 2.6.23 CFS Aiming at:

 Giving each task a fair share (portion) of the
processor time (Completely Fair)

 Improving the interactive performance of scheduler
for desktop.

 Introduces simple/efficient algorithmic approach
(red-black tree) with O(log N).

 Completely Fair Scheduler (CFS)

• No time slices!... sort of
• Uses wait_runtime (individual) and fair_clock (queue-wide)

• Processes build up CPU debt

• Different priorities “spend” time differently

• Half priority task sees time pass twice as fast

• O(log n) complexity
• Only marginally slower than O(1) at very large numbers of

inputs

 CFS Features (cont)

• CFS basically models an ideal, precise multitasking CPU’[5] on real
hardware, that is, is a CPU that can run multiple processes at the same
time (in parallel), giving each process an equal share of processor power(
not time, but power).

• If a single process is running, it wold receive 100% of the processor’s
power. With two processes, each would have exactly 50% of the physical
power (in parallel). Similarity, with four processes running, each would get
25% of physical CPU power in parallel and so on. Therefore, the CPU will
be fair with all running processes

 Completely Fair Scheduler (CFS)

Single task

100% CPU

Two tasks

50% CPU 50% CPU

Four tasks

25%
CPU

25%
CPU

25%
CPU

25%
CPU

• Obviously, this ideal CPU is not existent, but the CFS tries to emulate such
a processor in software.

• On an actual real world processor, only one task can be allocated to a CPU
at a particular time.

• Therefore, all other tasks wait during this period. So, while the currently
running task gets 100% of the CPU power, all other tasks get 0% of the CPU
power. This is obviously Not Fair

 Completely Fair Scheduler (CFS)

Single task

100% CPU

Two tasks

100% CPU

0% CPU

Four tasks

100%
CPU

0%
CPU

 Tasks are maintained in a time-ordered (i.e. vruntime)
red-black tree for each CPU

 Red-Black Tree: Self-balancing binary search tree

Balancing is preserved by painting each node with one of two colors
in a way to satisfy certain properties. When the tree is modified , the
new tree is rearranged and repainted to restore the coloring
properties.

The balancing of the tree can guarantee that no leaf can be more
than twice as deep as others and the tree operations
(searching/insertion/deletion/recoloring) can be performed in O(log N)
time

 CFS will switch to the leftmost task in the tree, that is, the
one with the lowest virtual runtime (most need for CPU) to
maintain fairness.

 CFS ,Red-Black tree

 The key for each node
is the vruntime of the
corresponding task.

 To pick the next task to
run, simply take the
leftmost node.

 Fedora CFS use Red-Black tree

• An important class of scheduling algorithms is the class of

dynamic priority algorithms

◦ In dynamic priority algorithms, the priority of a task can change during

its execution

◦ Fixed priority algorithms are a sub-class of the more general class of

dynamic priority algorithms: the priority of a task does not change.

• The most important (and analyzed) dynamic priority algorithm is

Earliest Deadline First (EDF)

◦ The priority of a job (istance) is inversely proportional to its absolute

deadline;

◦ In other words, the highest priority job is the one with the earliest

deadline;

◦ If two tasks have the same absolute deadlines, chose one of the two at

random (ties can be broken arbitrarly).

◦ The priority is dynamic since it changes for different jobs of the same

task.

 Earliest Deadline-first

• Theorem Given a task set of periodic or sporadic tasks, with relative deadlines
equal to periods, the task set is schedulable by EDF if and only if

Where the Ci are the worst-case computation time of the n and the T is inter arrival
periods and U is the utilization

• Corollary EDF is an optimal algorithm, in the sense that if a task set if
schedulable, then it is schedulable by EDF.

◦ In fact, if U > 1 no algorithm can successfully schedule

the task set;

◦ if U ≤ 1, then the task set is schedulable by EDF (and

maybe by other algorithms).

• In particular, EDF can schedule all task sets that can be scheduled by FP, but not
vice versa.

• Notice also that offsets are not relevant!

 Earliest Deadline-first

 Example: scheduling with EDF

The sum up, of CPU Scheduling algorithms in any OS,
is to make task processing more efficiency and
systematically through, giving each task a fair time to
do the process. Thus, make the OS users more
comfortable though feeling that all tasks done at the
same time.

The future of CPU Scheduling development is still
opening in order to face the challenges of computer
and digital world growing.

 Summery

• http://www.studytonight.com/operating-
system/cpu-scheduling

• http://web.cse.ohio-

• https://lwn.net/Articles/240474/

• state.edu/~agrawal.28/660/Slides/jan16.pdf

• http://www.ayomaonline.com/academic/cpu-
scheduling/
• https://superuser.com/questions/414604/differ

ence-between-the-windows-and-linux-thread-
scheduler

• https://www.kernel.org/doc/Documentation/sched
uler/sched-design-CFS.txt

 References

http://www.studytonight.com/operating-system/cpu-scheduling
http://web.cse.ohio-/

