
Alla Alwindawi
2016-2017 spring term
Istanbul Kemerburgaz university

What is Dining philosopher problem

 In Computer science, the dining philosophers problem is an example
problem often used in concurrent algorithm design to illustrate
Synchronization issues and techniques for resolving them.

 It a theory was originally formulated in 1965 by Dutch computer
scientist called Edsger Dijkstra .

 It’s concerning resource allocation between processes. it is a model
and universal method for testing and comparing theories on resource
allocation.

 Dijkstra hoped to use it to help create a layered operating system.

what is the problem about

It’s talking about
 that five philosophers sit around table with five bowls of

spaghetti

 A fork is placed Between each pair of bowls of spaghetti

 they spend their lives just thinking and eating.

The Rule

 The philosophers can't connect with each other

 A philosopher is either eating or thinking.

 When a philosopher wants to eat, he uses two forks -

one from their left and one from their right.

 When a philosopher wants to think, he keeps down

both forks at their original place.

 Philosopher can’t start eating until he has both of

them “2 forks”.
Analysis :
How do we write a threaded program to simulate philosophers?

 Thinking : executing independently .
Hungry : requesting a resource
 Eating : using shared resource.

How we can defined
“Thinking , Hungry and

Eating “ in the operating
system ?

Problems

1. The most serious problem of this program is that deadlock

could occur!

What if every philosopher sits down in the same time and picks

up his left fork as shown in the figure?

In this case, all forks are locked and none of the philosopher can

successfully lock his right fork .

As a result, we have a circular waiting

“(every philosopher waits for his right fork that is currently

being locked by his right neighbor) “

and hence a deadlock occurs.

2. Starvation is also a problem!
 Imagine that two philosophers are fast thinkers and fast

eaters. They think fast and get hungry fast.
 Then, they sit down in opposite chairs as shown below.
 Because they are so fast, it is possible that they can lock

their forks and eat. After finish eating and before their
neighbors can lock the forks and eat, they come back again
and lock the forks and eat.

 In this case, the other three philosophers, even though they
have been sitting for a long time, they have no chance to eat.
This is a starvation.

“Note that it is not a deadlock because there is no circular
waiting, and every one has a chance to eat!”

 The problem was designed to illustrate the challenges of

avoiding Deadlock- a system state in which no progress is

possible

 How to design a Concurrent Algorithm such that each

philosopher won’t starve , he can forever continue to

alternate between eating and thinking assuming that any

philosopher cannot know when other may want to eat or

think .

Problems

Resource Hierarchy Solution

 Assigns a partial to the resources (fork)
 All resources will be requested in order and no 2 resources

unrelated by order will ever be used by a single unit of work at
the same time .

 Resources are numbered 1-5 and each philosopher will always
pick up the lower-numbered fork and then the higher-
numbered fork.

 If 4 of 5 philosopher together pick up their “lower fork” , only
one “high fork “ will remain on the table .

So
 The 5th philosopher will NOT be able to pick up any fork .
 Also only 1 philosopher will have access to the “high fork” .

Guarantee that a philosopher can pick up only 2
solution by introducing an arbitrator Ex: Waiter

 In order to pick up the fork , a philosopher must ask
waiter’s permission

 Waiter gives permission to only 1 philosopher at a
time until he has picked up both his fork

 Putting down a fork is always allowed.

* Waiter is implemented as a mutex – a program object
that allows multiple program threads to share same
resource, such as file access , but not simultaneously .

Arbitrator solution

what are the advantages of this problem in
operating systems?

 Almost all the current operating systems are systems support more than
one task in the same time.

 That you can browse the Internet and use Word file at the same time.

 The operating system needs to support these programs (philosophers)
through the memory and processing power of their distribution (forks)
without access to state of the deadlock, and without disable one of the
programs entirely.

 Some sources can not be used at the same time more than one program
(one fork).

 therefore to make it easy to understand this problem and to solve it ,
Dijkstra has clarify it in this way

 First, when multiple threads or processes access multiple
resources exclusively, you should worry about the
deadlock.

 Second, you should worry about starvation, and the only
way to prevent starvation is to enforce all
threads/processes for getting unblocked.

 Third, usually you should treat all threads equally, so that
no single thread gets more resources than the others due
to your synchronization protocol.

Conclusion

Thank you for
your attention

