
Dekker’s algorithms for
Semaphores Implementation

ALI TARIQ AL-KHAYYAT (163101413)
Submitted to : Prof. Dr. Huseyin Balik

Outlines

• what is Dekker’s algorithm.

• Dekker’s General algorithms.

• What is Semaphores.

• Semaphores implementation.

• Semaphore Implementation Busy waiting.

• semaphores implementation for solving critical section by mutual
exclusion.

what is Dekker’s algorithms ?

Flag represent

Favored Thread

Thread 1

Thread 2

Dekker adds the idea of
a favored thread and allows
access to either thread when
the request is uncontested

Dekker’s algorithms

• Dekker's algorithm is the first known correct solution to the mutual exclusion
problem in concurrent programming, Dutch mathematician Dekker by Dijkstra .

• It allows two threads to share a single-use resource without conflict, using only
shared memory for communication.

• If two processes attempt to enter a critical section at the same time, the
algorithm will allow only one process in, based on whose turn it is, If one
process is already in the critical section.

• the other process will busy wait for the first process to exit, This is done by the
use of two flags, wants_to_enter[0] and wants_to_enter[1] , which indicate an
intention to enter the critical section on the part of processes 0 and 1,
respectively.

Dekker’s General algorithms

Dekker’s Algorithm

• Assumes two threads, numbered 0 and 1

CSExit(int i)

{
turn = J;

inside[i] = false;

}

CSEnter(int i)
{

inside[i] = true;

while(inside[J])

{

if (turn == J)

{

inside[i] = false;

while(turn == J) continue;

inside[i] = true;

}

}}

critical section

Semaphores

atomic and
mutually exclusive

• If a process is waiting for a signal, it is
suspended until that signal is sent.

• Wait and Signal operations cannot
be interrupted.

• A queue is used to hold processes
waiting on the semaphore.

Semaphores
• Synchronization tool that does not require busy waiting , Semaphore is un integer

flag, indicated that it is safe to proceed.

• Two standard operations modify S: wait() and signal()

• Originally called P() and V() , Less complicated.

• Can only be accessed via two indivisible (atomic)

operations.

wait(S):

S <= 0

atomic

S - -

F

T
wait (S) {

while S <= 0
; // no-op

S--;
}

signal (S) {
S++;

}

Semaphores Implementation

• Must guarantee that no two processes can execute wait () and signal () on the
same semaphore at the same time.

• Thus, implementation becomes the critical section problem where the wait and
signal code are placed in the critical section.

• Could now have busy waiting in critical section implementation

• But implementation code is short

• Little busy waiting if critical section rarely occupied

• Note that applications may spend lots of time in critical sections and therefore
this is not a good solution.

Semaphore Implementation
block and wakeup

• With each semaphore there is an associated waiting queue. Each entry in a
waiting queue has two data items:

• value (of type integer)

• pointer to next record in the list

• Two operations:

• block – place the process invoking the operation on the suitable waiting
queue.

• wakeup – remove one of processes in the waiting queue and place it in the
ready queue.

Semaphore Implementation with Busy
waiting

• Implementation of wait:

wait (S){

value--;

if (value < 0) {

add this process to waiting queue

block(); } }

• Implementation of signal:

Signal (S){

value++;

if (value <= 0) {

remove a process P from the waiting queue

wakeup(P); } }

• For n processes

• Initialize semaphore
“mutex” to 1

• Then only one process
is allowed into CS
(mutual exclusion)

• To allow 2 processes
into CS at a time,
simply initialize mutex
to 2

Process P0:

repeat

wait(mutex);

CS

signal(mutex);

RS

forever

semaphores implementation for solving
critical section by mutual exclusion

Semaphores in Action

Initialize mutex to 1

Process P1:

repeat

wait(mutex);

CS

signal(mutex);

RS

forever

Process P0:

repeat

wait(mutex);

CS

signal(mutex);

RS

forever

The References

https://en.wikipedia.org/wiki/Dekker%27s_algorithm

• “Operating Systems”, William Stallings, ISBN 0-13-032986-X

• “Operating Systems – A modern perspective”, Garry Nutt, ISBN 0-
8053-1295-1

https://en.wikipedia.org/wiki/Dekker's_algorithm

