Dekker’s algorithms for
Semaphores Implementation

ALI TARIQ AL-KHAYYAT (163101413)
Submitted to : Prof. Dr. Huseyin Balik

OUTLINES

what is Dekker’s algorithm.

Dekker’s General algorithms.

What is Semaphores.

Semaphores implementation.

Semaphore Implementation Busy waiting.

semaphores implementation for solving critical section by mutual
exclusion.

WHAT IS DEKKER’S ALGORITHMS ?

Dekker adds the idea of

a favored thread and allows
access to either thread when
the request is uncontested

Thread 1

Flag represent
Favored Thread

DEKKER’S ALGORITHMS

Dekker's algorithm is the first known correct solution to the mutual exclusion
problem in concurrent programming, Dutch mathematician Dekker by Dijkstra .

It allows two threads to share a single-use resource without conflict, using only
shared memory for communication.

If two processes attempt to enter a critical section at the same time, the
algorithm will allow only one process in, based on whose turn it is, If one
process is already in the critical section.

the other process will busy wait for the first process to exit, This is done by the
use of two flags, wants_to_enter[()] and wants_to_enter['], which indicate an
intention to enter the critical section on the part of processes 0 and ,
respectively.

DEKKER’S GENERAL ALGORITHMS

variables

wants to enter : array of 2 booleans

turn : integer

wants to enter[@] « false
wants to enter[l] « false
turn « @ // or 1

wants_to enter[@] « true
while wants_to enter[1] {
if turn # @ {
wants_to enter[@] « false
while turn # @ {
// busy wait
}
wants _to enter[@] « true

// critical section

turn « 1
wants _to enter[@] « false
// remainder section

wants to enter[1] « true
while wants to enter[@] {
it turn # 1 {
wants_to enter[1l] « false
while turn # 1 {
// busy wait

1
J

wants to enter[1l] « true
1
i

// critical section

turn « 0
wants_to enter[1] « false
// remainder section

DEKKER’S ALGORITHM

Assumes two threads, numbered 0 and 1

CSEnter(int i) CSEXxit(int 1)
{ {
inside[i] = true; turn = J;
(inside[J]) inside[i] = false;
{ }
If (turn ==J)
{
iInside]i] = false; critical section

(turn == J) continue;
inside[i] = true;
}
1

Signal S

SEMAPHORES

sem =1

If a process is waiting for a signal, it is
suspended until that signal is sent.

Wait and Signal operations cannot
be interrupted.

A queue is used to hold processes
waiting on the semaphore.

acquire
release

mutually exclusive

and ‘
@

shared resource

SEMAPHORES

Synchronization tool that does not require busy waiting , Semaphore is un integer
flag, indicated that it is safe to proceed.

Two standard operations modify S: wait() and signal()
Originally called P() and V() , Less complicated.

Can only be accessed via two indivisible ()

operations.

wait (S) {

while S<=0

; // no-op

S--;
}
signal (S) {
S++;

}

SEMAPHORES IMPLEMENTATION

Must guarantee that no two processes can execute wait () and signal () on the
same semaphore at the same time.

Thus, implementation becomes the critical section problem where the wait and
signal code are placed in the critical section.

Could now have busy waiting in critical section implementation
But implementation code is short
Little busy waiting if critical section rarely occupied

Note that applications may spend lots of time in critical sections and therefore
this is not a good solution.

SEMAPHORE IMPLEMENTATION
BLOCK AND WAKEUP

With each semaphore there is an associated waiting queue. Each entry in a
waiting queue has two data items:

value (of type integer)

pointer to next record in the list

Two operations:
block — place the process invoking the operation on the suitable waiting

queue.
wakeup — remove one of processes in the waiting queue and place it in the

ready queue.

SEMAPHORE IMPLEMENTATION WITH BUSY

WAITING
Implementation of wait:
wait (S){
value--;
(value < 0) {

add this process to waiting queue
block(); } }

Implementation of signal:
Signal (S){
value++;
(value <=0) {
remove a process P from the waiting queue
wakeup(P); } }

SEMAPHORES IMPLEMENTATION FOR SOLVING
CRITICAL SECTION BY MUTUAL EXCLUSION

For n processes

Initialize semaphore Process P;:
“mutex” to 1 repeat

wait (mutex) ;
Then only one process CS
is allowed into CS signal (mutex) ;
(mutual exclusion) RS

forever

To allow 2 processes
Into CS at a time,
simply initialize mutex
to 2

SEMAPHORES IN ACTION

Initialize mutex to 1

Process P, : Process P;:
repeat repeat
wait (mutex) ; wait (mutex) ;
cs >< cs
signal (mutex) ; signal (mutex) ;

RS RS
forever forever

“Operating Systems”, William Stallings, ISBN 0-13-032986-X

“Operating Systems — A modern perspective”, Garry Nutt, ISBN O-
8053-1295-1

https://en.wikipedia.org/wiki/Dekker's_algorithm

