
operating system
Spring 2017

prof. rD . asanH alikB

Student Name : ALI RAMADAN ALKHARIF

Student ID : 163110450
Email : a.ramadan1976@yahoo.com

Android (Marshmallow
or Nougat) Process and
Thread Management

Introduction

There is the latest update of Android is called as Android 6.0
“Marshmallow” to the operating system. Its third & final
preview released on August 17, 2015.
Google has rolled out with an update is that Android M is
now called as Android 6.0 Marshmallow. The primary focus
of this new emergence is to enhance the overall user
experience as in it will bring a few features, including
“redesigned permission model” in that at the time of
installation, the applications will no longer automatically
granted all of their specified permissions.

Processes

Process is a program in execution. A process has a life cycle.

Earlier computer systems allowed only one program to be executed at a time. This
program ruled the system. It had access to all resources. Nowadays, our systems are
time sharing. Multiple programs can be loaded together. They execute concurrently.
Here comes the role of process. A process is a program in execution i.e., to perform
better, operating systems have a collection of processes.

 System Processes execute system code.

 User Processes executes user code.

These processes can run concurrently, which is achieved by switching the
CPU between processes. Structure of a process is as shown below:

Structure of a process

Process States
 New: The process is created.

 Running: Instructions are executed at this stage.

 Waiting: Process is waiting for some event to occur.

 Ready: Process is waiting to be assigned to a processor.

 Terminated: Execution is finished.

Android system maintains processes as long as possible but sometimes they
have to kill processes to recover resources. This killing procedure is decided by
the importance hierarchy. Lowest priority gets out of the system first and
processes with higher priority will be eliminated last. We already know about
these processes. Their importance hierarchy is as shown below:

 Foreground Process

 Visible Process

 Service Process

 Background Process

 Empty Process.

 Foreground process: The app you’re using is considered the foreground process.
Other processes can also be considered foreground processes — for example, if
they’re interacting with the process that’s currently in the foreground. There are only a
few foreground processes at any given time.

 Visible process: A visible process isn’t in the foreground, but is still affecting what
you see on your screen. For example, the foreground process may be a dialog that
allows you to see an app behind it — the app visible in the background would be a
visible process.

 Service process: A service process isn’t tied to any app that’s visible on your screen.
However, it’s doing something in the background, such as playing music or
downloading data in the background. For example, if you start playing music and switch
to another app, the music-playing is in the background is being handled by a service
process.

 Background process: Background processes are not currently visible to the user. They
have no impact on the experience of using the phone. At any given time, many
background processes are currently running. You can think of these background
processes as “paused” apps. They’re kept in memory so you can quickly resume using
them when you go back to them, but they aren’t using valuable CPU time or other non-
memory resources.

 Empty process: An empty process doesn’t contain any app data anymore. It may be
kept around for caching purposes to speed up app launches later, or the system may
kill it as necessary.

Android Automatically Manages Processes
 When Android needs more system resources, it will start killing the least important

processes first. Android will start to kill empty and background processes to free up
memory if you’re running low. If you need more memory — for example, if you’re
playing a particularly demanding game on a device without much RAM, Android will
then start to kill service processes, so your streaming music and file downloads may
stop.

 Android provides apps with so much flexibility that they have room to misbehave. For
example, a poorly coded app could start a service process that remains running in the
background all the time, using up all your CPU time and dramatically decreasing your
battery life.

For example, let’s say you turn on your phone and open a music app. While you use it,
the music app will be a foreground process. When you start playing music and leave the
music app, the music will continue playing as a service process.

Angry Birds as another example. Angry Birds would be a foreground process while you
were playing it. When you leave Angry Birds and enter the Gmail app to view your
email, Angry Birds becomes a background process (because it doesn’t have to do
anything in the background), while Gmail becomes the foreground process. When you
switch back to Angry Birds, it will become your foreground process and the game will
resume quickly. Angry Birds wasn’t using resources in the background — aside from
some RAM — but it resumes quickly because it remained cached and ready to resume.

Android Threads
A thread is the smallest unit of processing which can be managed by the CPU scheduler.
Generally, threads are contained in a process. Thread is a friendly guy when it comes to
point of sharing resources with other threads i.e., threads belonging to same process can
share their resources even the operating system resources. A thread has its own ID, a
program counter, a register and a stack

 Program Counter: It is a register. It contains the address of the instruction which is currently
executed. We can find the next instruction which is going to be executed. After fetching, value of
the program counter is incremented by 1 and hence indicates the next instruction.

 Register: It is a part of computer processor. There are many registers. They provide a small
amount of storage and since they are in CPU, access to them is very fast as compared to other
storage structures.

 Stack: It is a data structure, i.e. It is a way of organizing data in a computer. Storage is in form
of pile where “LIFO” pattern is followed, i.e., last in first out architecture is followed.

 ID: It is the unique ID of a thread which distinguishes it from other threads.

 There can be multiple threads in a process. Threads facilitate concurrency or multi-
tasking in operating systems. For example, Word may have one thread to display
graphics and other for checking spelling or grammar mistakes, etc. A process can
contain single thread or multiple threads. Let us see the difference between two of
them.

Advantages of Threads
 Receptiveness: If an interactive application like a web browser can be multi-threaded then,

even if a part of the program is blocked or busy performing any long running task, the
application responds to new requests quickly and hence increases the receptiveness of
application.

 Providence: Threads share resources and hence they are very economical. Allocating memory
and resources is just like investing money and thus they reduce the wastage of resources. It is
easy to manage threads as compared to processes.

 Sharing: Threads share resources by default. They share the code and data and thus
applications can share several threads of activity within the same address space.

 Architecture: Multi-threaded programming increases the usability of multi-processor
architecture.

 Distributed Applications: They are very useful in distributed applications as well. For e.g.,
the server will be multi-threaded one for each client. In fact clients too are multi-threaded, one
for managing the connection with server and other for communicating with the server.

Thank you

