
IT 540 Operating Systems
ECE519 Advanced Operating 

Systems

Prof. Dr. Hasan Hüseyin BALIK

(8th Week)



8. Virtual Memory

(Advanced) 

Operating 

Systems



8. Outline
• Hardware and Control Structures

• Operating System Software



Virtual memory A storage allocation scheme in which secondary memory can be 

addressed as though it were part of main memory. The addresses a 

program may use to reference memory are distinguished from the 

addresses the memory system uses to identify physical storage sites, and 
program-generated addresses are translated automatically to the 

corresponding machine addresses.The size of virtual storage is limited by 

the addressing scheme of the computer system and by the amount of 

secondary memory available and not by the actual number of main storage 

locations.  

Virtual address The address assigned to a location in virtual memory to allow that location 

to be accessed as though it were part of main memory. 

Virtual address 

space 

The virtual storage assigned to a process. 

Address space The range of memory addresses available to a process. 

Real address The address of a storage location in main memory. 

 

Virtual Memory Terminology



Hardware and Control Structures

 Two characteristics fundamental to memory 

management:
1) all memory references are logical addresses that are 

dynamically translated into physical addresses at run time

2) a process may be broken up into a number of  pieces that 

don’t need to be contiguously located in main memory 

during execution

 If  these two characteristics are present, it is not 

necessary that all of  the pages or segments of  a 

process be in main memory during execution



 Operating system brings into main memory a few pieces of  the 

program

 Resident set

 portion of  process that is in main memory

 An interrupt is generated when an                                       

address is needed that is not in main                                 

memory

 Operating system places the process                                              

in a blocking state

Continued . . .



Execution of a Process

 Piece of  process that contains the logical address is brought into 

main memory

 operating system issues a disk I/O Read request

 another process is dispatched to run while the disk I/O takes 

place

 an interrupt is issued when disk I/O is complete, which causes 

the operating system to place the affected process in the Ready 

state



Implications

 More processes may be maintained in main memory

 only load in some of  the pieces of  each process

 with so many processes in main memory, it is very likely a 

process will be in the Ready state at any particular time

 A process may be larger than all of  main memory



Real and Virtual Memory

Real 
memory

main memory, 
the actual 

RAM

Virtual 
memory

memory on disk

allows for effective 
multiprogramming 
and relieves the user 
of  tight constraints 
of  main memory



A state in which 
the system spends 
most of  its time 

swapping process 
pieces rather than 

executing 
instructions

To avoid this, the 
operating system tries 

to guess, based on 
recent history, which 
pieces are least likely 
to be used in the near 

future



Principle of Locality

 Program and data references within a process tend to cluster

 Only a few pieces of  a process will be needed over a short 

period of  time

 Therefore it is possible to make intelligent guesses about which 

pieces will be needed in the future

 Avoids thrashing



For virtual memory to be practical and 
effective:

• hardware must support paging and 
segmentation 

• operating system must include software for 
managing the movement of  pages and/or 
segments between secondary memory and 
main memory



Paging

 The term virtual memory is usually associated with systems that 

employ paging

 Use of  paging to achieve virtual memory was first reported for the 

Atlas computer (1992, one of  the world's first supercomputers,

joint development between the University of  Manchester, Ferranti, 

and Plessey )

 Each process has its own page table

 each page table entry contains the frame number of  the 

corresponding page in main memory



Virtual Address

Page Number Offset

(a) Paging only

Page Table Entry

Virtual Address

Segment Number Offset

Segment Number Page Number Offset

(b) Segmentation  only

Segment Table Entry

Virtual Address

Segment Table Entry

(c) Combined segmentation and paging

Figure 8.1 Typical Memory Management Formats

Page Table Entry

Frame NumberP MOther Control Bits

Frame NumberP MOther Control Bits

Length Segment BaseP MOther Control Bits

Length Segment BaseControl Bits

P= present bit

M = Modified bit



Page # Offset Frame #

Virtual Address Physical Address

Page

Frame

Offset

Offset

Figure 8.2   Address Translation in a Paging System

Program Paging Mechanism Main Memory

P
a
g
e
#

Page Table Ptrn bits

m bits

Register

Page Table

Frame #

+



10 bits10 bits 12 bits

Root page

table ptr

Frame #

Virtual Address

4-kbyte page

table (contains

1024 PTEs)
Root page table

(contains 1024 PTEs)

Page

Frame

Offset

Figure 8.4  Address Translation in a Two-Level Paging System

+ +

Program Paging Mechanism Main Memory



 Page number portion of  a virtual address is mapped into a hash 

value

 hash value points to inverted page table

 Fixed proportion of  real memory is required for the tables 

regardless of  the number of  processes or virtual pages supported

 Structure is called inverted because it indexes page table entries by 

frame number rather than by virtual page number

 This approach are used on the PowerPC, UltraSPARC, and the 

IA-64 architecture



Inverted Page Table

Each entry in the page table includes:

Page 
number

Process 
identifier

• the process 
that owns 
this page

Control 
bits

• includes 
flags and 
protection 
and locking 
information

Chain 
pointer

• the index 
value of  the 
next entry 
in the chain



Translation Lookaside
Buffer (TLB)

 To overcome the effect of  

doubling the memory 

access time, most virtual 

memory schemes make 

use of  a special high-speed 

cache called a translation 

lookaside buffer

 Each virtual memory 

reference can cause two 

physical memory accesses:

 one to fetch the page 

table entry

 one to fetch the data



Start

CPU checks the TLB

Page Table

Entry in

TLB?

Access Page Table

Update TLB

Yes

Yes

Yes

No

No

No

CPU Generates

Physical Address

OS Instructs CPU

to Read the Page

from Disk

CPU Activates

I/O Hardware

Page Fault

Handling Routine

Return to

Faulted Instruction

Page Tables

Updated

Figure 8.7  Operation of Paging and Translation Lookaside Buffer (TLB) [FURH87]

Perform Page

Replacement

Page Transferred

from Disk to

Main Memory

Page

in Main

Memory?

Memory

Full?



Page Size

 The smaller the page size, the lesser the amount of  internal 

fragmentation

 however, more pages are required per process

 more pages per process means larger page tables

 for large programs in a heavily multiprogrammed

environment some portion of  the page tables of  active 

processes must be in virtual memory instead of  main memory

 the physical characteristics of  most secondary-memory 

devices favor a larger page size for more efficient block 

transfer of  data



Computer Page Size 

Atlas 512 48-bit words 

Honeywell-Multics 1024 36-bit words 

IBM 370/XA and 370/ESA 4 Kbytes 

VAX family 512 bytes 

IBM AS/400 512 bytes 

DEC Alpha 8 Kbytes 

MIPS 4 Kbytes to 16 Mbytes 

UltraSPARC 8 Kbytes to 4 Mbytes 

Pentium 4 Kbytes or 4 Mbytes 

IBM POWER 4 Kbytes 

Itanium 4 Kbytes to 256 Mbytes 

 

Example 

Page 

Sizes



Page Size

 Contemporary programming 

techniques used in large 

programs tend to decrease the 

locality of  references within a 

process

the design issue of  
page size is related to 
the size of  physical 
main memory and 

program size

main memory is 
getting larger and 

address space used by 
applications is also 

growing

most obvious on 
personal computers 

where applications are 
becoming increasingly 

complex



Segmentation

 Segmentation 

allows the 

programmer to 

view memory as 

consisting of  

multiple address 

spaces or 

segments

Advantages:

• simplifies handling 
of  growing data 
structures

• allows programs to 
be altered and 
recompiled 
independently

• lends itself  to 
sharing data 
among processes

• lends itself  to 
protection



Segment Organization
 Each segment table entry contains the starting address of  the 

corresponding segment in main memory and the length of  the 

segment

 A bit is needed to determine if  the segment is already in main 

memory

 Another bit is needed to determine if  the segment has been 

modified since it was loaded in main memory



Seg #

S
eg

 #

Offset = d

Seg Table Ptr

Virtual address

Register

Segment table

Physical address

Length Base

S
eg

m
en

t

Base + d

d

Figure 8.11   Address Translation in a Segmentation System

+

+

Program Segmentation mechanism Main memory



Combined Paging and 
Segmentation

In a combined 
paging/segmentation system 

a user’s address space is 
broken up into a number of  
segments. Each segment is 
broken up into a number of  
fixed-sized pages which are 
equal in length to a main 

memory frame

Segmentation is visible to the 
programmer

Paging is transparent to the 
programmer



Page #Seg #

S
eg

#

Offset

Seg Table Ptr

Frame #

Virtual Address

Segment

Table
Page

Table

Page

Frame

Offset

Offset

Figure 8.12  Address Translation in a Segmentation/Paging System

+ +

P
a

g
e#

Program Segmentation

Mechanism

Paging

Mechanism

Main Memory



Virtual Address

Page Number Offset

(a) Paging only

Page Table Entry

Virtual Address

Segment Number Offset

Segment Number Page Number Offset

(b) Segmentation  only

Segment Table Entry

Virtual Address

Segment Table Entry

(c) Combined segmentation and paging

Figure 8.1 Typical Memory Management Formats

Page Table Entry

Frame NumberP MOther Control Bits

Frame NumberP MOther Control Bits

Length Segment BaseP MOther Control Bits

Length Segment BaseControl Bits

P= present bit

M = Modified bit



Protection and Sharing

 Segmentation lends itself  to the implementation of  protection 

and sharing policies

 Each entry has a base address and length so inadvertent memory 

access can be controlled

 Sharing can be achieved by segments referencing multiple 

processes





Operating System Software

The design of  the memory management 
portion of  an operating system depends on 
three fundamental areas of  choice:

• whether or not to use virtual memory techniques

• the use of  paging or segmentation or both

• the algorithms employed for various aspects of  
memory management



 Determines when a 

page should be 

brought into 

memory

Two main 
types:

Demand 
Paging 

Prepaging



Demand Paging 

 Demand Paging

 only brings pages into main memory when a reference is made 

to a location on the page

 many page faults when process is first started 

 principle of  locality suggests that as more and more pages are 

brought in, most future references will be to pages that have 

recently been brought in, and page faults should drop to a very 

low level



Prepaging

 Prepaging

 pages other than the one demanded by a page fault are brought 

in

 exploits the characteristics of  most secondary memory devices

 if  pages of  a process are stored contiguously in secondary 

memory it is more efficient to bring in a number of  pages at 

one time

 ineffective if  extra pages are not referenced

 should not be confused with “swapping”



Placement Policy

 Determines where in real memory a process 
piece is to reside

 Important design issue in a segmentation system

 Paging or combined paging with segmentation 
placing is irrelevant because hardware performs 
functions with equal efficiency

 For NUMA systems an automatic placement 
strategy is desirable



Replacement Policy

 Deals with the selection of  a page in main memory 

to be replaced when a new page must be brought in

 objective is that the page that is removed be the page 

least likely to be referenced in the near future

 The more elaborate the replacement policy the 

greater the hardware and software overhead to 

implement it



 When a frame is locked the page currently stored in that frame 

may not be replaced

 kernel of  the OS as well as key control structures are held 

in locked frames

 I/O buffers and time-critical areas may be locked into 

main memory frames

 locking is achieved by associating a lock bit with each 

frame



Algorithms used for 
the selection of  a 
page to replace:

• Optimal

• Least recently used (LRU)

• First-in-first-out (FIFO)

• Clock



Least Recently Used 
(LRU)

 Replaces the page that has not been referenced for the longest 

time

 By the principle of  locality, this should be the page least likely 

to be referenced in the near future

 Difficult to implement

 one approach is to tag each page with the time of  last 

reference

 this requires a great deal of  overhead



First-in-First-out (FIFO)

 Treats page frames allocated to a process as a circular buffer

 Pages are removed in round-robin style

 simple replacement policy to implement

 Page that has been in memory the longest is replaced



Clock Policy

 Requires the association of  an additional bit with each frame

 referred to as the use bit

 When a page is first loaded in memory or referenced, the use bit 

is set to 1

 The set of  frames is considered to be a circular buffer

 Any frame with a use bit of  1 is passed over by the algorithm

 Page frames visualized as laid out in a circle



2

2 3 2 1 5 2 4 5 3 2 5 2

2
3

2
3

2
3
1

F

F

F F F F F F

F F F

F F

2
3
5

2
3
5

4
3
5

4
3
5

4
3
5

2
3
5

2
3
5

2
3
5

2 2
3

2
3

2
3
1

2
5
1

2
5
1

2
5
4

2
5
4

3
5
4

3
5
2

3
5
2

3
5
2

2 2
3

2
3

2
3
1

5
3
1

5
2
1

5
2
4

5
2
4

3
2
4

3
2
4

3
5
4

3
5
2

2* 2*
3*

2*
3*

2*
3*
1*

5*
3
1

F

F = page fault occurring after the frame allocation is initially filled

F F F F

5*
2*
1

5*
2*
4*

5*
2*
4*

3*
2
4

3*
2*
4

3*
2

5*

3*
2*
5*

OPT

Page address

stream

LRU

FIFO

CLOCK

Figure 8.14  Behavior of Four Page-Replacement Algorithms



 Improves paging 

performance and 

allows the use of  

a simpler page 

replacement 

policy

A replaced page is 
not lost, but 

rather assigned to 
one of  two lists

Free page list

list of  page frames 
available for 

reading in pages

Modified page list

pages are written 
out in clusters 



Replacement Policy and Cache Size

 With large caches, replacement of  pages can have a performance 

impact

 if  the page frame selected for replacement is in the cache, that 

cache block is lost as well as the page that it holds

 in systems using page buffering, cache performance can be 

improved with a policy for page placement in the page buffer

 most operating systems place pages by selecting an arbitrary 

page frame from the page buffer



 The OS must decide how many pages to bring into main memory

 the smaller the amount of  memory allocated to each process, 

the more processes can reside in memory

 small number of  pages loaded increases page faults

 beyond a certain size, further allocations of  pages will not 

effect the page fault rate



Resident Set Size

Fixed-allocation Variable-allocation

 allows the number of  page 

frames allocated to a 

process to be varied over 

the lifetime of  the process

 gives a process a fixed 

number of  frames in main 

memory within which to 

execute

 when a page fault occurs, 

one of  the pages of  that 

process must be replaced



 The scope of  a replacement strategy can be categorized as 

global or local

 both types are activated by a page fault when there are no free 

page frames

Local

• chooses only among the resident pages of  the process that generated 
the page fault

Global 

• considers all unlocked pages in main memory 



Fixed Allocation, Local Scope

 Necessary to decide ahead of  time the amount of  

allocation to give a process

 If  allocation is too small, there will be a high page fault 

rate

• increased processor idle time

• increased time spent in 
swapping

If  allocation is too 
large, there will be 
too few programs 
in main memory



Variable Allocation 

Global Scope

 Easiest to implement

 adopted in a number of  operating systems

 OS maintains a list of  free frames

 Free frame is added to resident set of  process when a page fault 

occurs

 If  no frames are available the OS must choose a page currently in 

memory

 One way to counter potential problems is to use page buffering



 When a new process is loaded into main memory, allocate to it a 

certain number of  page frames as its resident set

 When a page fault occurs, select the page to replace from among 

the resident set of  the process that suffers the fault

 Reevaluate the allocation provided to the process and increase or 

decrease it to improve overall performance



Variable Allocation
Local Scope

 Decision to increase or decrease a resident set size is based 

on the assessment of  the likely future demands of  active 

processes

Key elements:

• criteria used to determine 
resident set size

• the timing of  changes



Page Fault Frequency 
(PFF)

 Requires a use bit to be associated with each page in memory

 Bit is set to 1 when that page is accessed

 When a page fault occurs, the OS notes the virtual time since the 

last page fault for that process

 Does not perform well during the transient periods when there is 

a shift to a new locality



 Evaluates the working set of  a process at sampling instances based 

on elapsed virtual time

 Driven by three parameters:

the minimum 
duration of  the 

sampling 
interval

the maximum 
duration of  the 

sampling 
interval

the number of  
page faults that 
are allowed to 
occur between 

sampling 
instances



Cleaning Policy

 Concerned with determining when a modified page should be 

written out to secondary memory

Precleaning

allows the writing of  pages in batches

Demand Cleaning

a page is written out to secondary memory only when it has been selected for 
replacement



Load Control

 Determines the number of  processes that will be resident in main 

memory

 multiprogramming level

 Critical in effective memory management

 Too few processes, many occasions when all processes will be 

blocked and much time will be spent in swapping

 Too many processes will lead to thrashing



 If  the degree of  multiprogramming is to be reduced, one or more 

of  the currently resident processes must be swapped out

Six possibilities exist:

• lowest-priority process

• faulting process

• last process activated

• process with the smallest resident set

• largest process

• process with the largest remaining execution window


