
IT 540 Operating Systems
ECE519 Advanced Operating

Systems

Prof. Dr. Hasan Hüseyin BALIK

(6th Week)

6. Concurrency:

Deadlock and

Starvation

(Advanced)

Operating

Systems

6. Outline
• Principles of Deadlock

• Deadlock Prevention

• Deadlock Avoidance

• Deadlock Detection

• An Integrated Deadlock Strategy

 The permanent blocking of a set of processes that
either compete for system resources or
communicate with each other

 A set of processes is deadlocked when each
process in the set is blocked awaiting an event
that can only be triggered by another blocked
process in the set

 Permanent

 No efficient solution

c b

d a

(a) Deadlock possible (b) Deadlock

Figure 6.1 Illustration of Deadlock

4 4

1

1

3

32 2

Progress

of Q

Progress

of PGet A

Get A

Get B

Get B

B

Required

B Required

A

Required

A

Required

Release A

Release

A

Release B

Release

B

deadlock

inevitable

P and Q

want A

P and Q

want B

1 2

3

4

5

6

Figure 6.2 Example of Deadlock

= possible progress path of P and Q.

 Horizontal portion of path indicates P is executing and Q is waiting.

 Vertical portion of path indicates Q is executing and P is waiting.

= both P and Q want resource A

= both P and Q want resource B

= deadlock-inevitable region

Progress

of Q

Progress

of PGet A

Get A

Get B

Get B

B

Required

B Required

A

Required

A Required

= possible progress path of P and Q.

 Horizontal portion of path indicates P is executing and Q is waiting.

 Vertical portion of path indicates Q is executing and P is waiting.

= both P and Q want resource A

= both P and Q want resource B

Release A

Release

A

Release B

Release

B

1 2 3

4

5

6

Figure 6.3 Example of No Deadlock

P and Q

want A

P and Q

want B

Reusable

• can be safely used by only one process at a time
and is not depleted by that use

• processors, I/O channels, main and secondary
memory, devices, and data structures such as
files, databases, and semaphores

Consumable

• one that can be created (produced) and
destroyed (consumed)

• interrupts, signals, messages, and
information

• in I/O buffers

Process P

 Process Q

Step Action Step Action

p0 Request (D) q0 Request (T)

p1 Lock (D) q1 Lock (T)

p2 Request (T) q2 Request (D)

p3 Lock (T) q3 Lock (D)

p4 Perform function q4 Perform function

p5 Unlock (D) q5 Unlock (T)

p6 Unlock (T) q6 Unlock (D)

 Example of Two Processes Competing for Reusable Resources

Deadlock occurs if the multiprogramming system interleaves the execution of the

two processes as follows: p 0 p 1 q 0 q 1 p 2 q 2

Example 2:
Memory Request

 Space is available for allocation of 200Kbytes, and

the following sequence of events occur:

 Deadlock occurs if both processes progress to their

second request

P1
. . .

. . .
Request 80 Kbytes;

Request 60 Kbytes;

P2
. . .

. . .
Request 70 Kbytes;

Request 80 Kbytes;

Consumable Resources
Deadlock

 Consider a pair of processes, in which each process attempts to receive a

message from the other process and then send a message to the other

process:

 Deadlock occurs if the Receive is blocking

P1

P1

P2

Rb

Ra

Ra

R
eq

ues
ts

R
eq

ues
ts

H
eld by

H
eld by

(c) Circular wait

(a) Resouce is requested

P1 P2

Rb

Ra

R
eq

ues
ts

R
eq

ues
ts

H
eld by

H
eld by

(d) No deadlock

P1 Ra

(b) Resource is held

Figure 6.5 Examples of Resource Allocation Graphs

Requests Held by

P1

Ra

P2

Rb

P3

Rc

P4

Rd

Figure 6.6 Resource Allocation Graph for Figure 6.1b

Conditions for Deadlock

Mutual
Exclusion

• only one
process may
use a
resource at a
time

• No process
may access a
resource unit
that has been
allocated to
another
process.

Hold-and-
Wait

• a process
may hold
allocated
resources
while
awaiting
assignment
of others

No Pre-emption

• no resource
can be
forcibly
removed
from a
process
holding it

Circular Wait

• a closed
chain of
processes
exists, such
that each
process holds
at least one
resource
needed by
the next
process in
the chain

Dealing with Deadlock

 Three general approaches exist for dealing with deadlock:

• adopt a policy that eliminates one of the conditions

Prevent Deadlock

• make the appropriate dynamic choices based on the
current state of resource allocation

Avoid Deadlock

• attempt to detect the presence of deadlock and take
action to recover

Detect Deadlock

 Design a system in such a way that the possibility of deadlock is

excluded

 Two main methods:

 Indirect

 prevent the occurrence of one of the three necessary conditions

 Direct

 prevent the occurrence of a circular wait

Mutual
Exclusion

if access to a
resource requires
mutual exclusion
then it must be

supported by the OS

Hold and Wait

require that a process
request all of its

required resources at
one time and blocking

the process until all
requests can be

granted
simultaneously

 No Preemption

 if a process holding certain resources is denied a further request, that

process must release its original resources and request them again

 OS may preempt the second process and require it to release its

resources

 Circular Wait

 define a linear ordering of resource types

 A decision is made dynamically whether the current

resource allocation request will, if granted, potentially

lead to a deadlock

 Requires knowledge of future process requests

Deadlock
Avoidance

Process Initiation
Denial

• do not start a
process if its
demands might lead
to deadlock

Resource
Allocation Denial

• do not grant an
incremental resource
request to a process if
this allocation might
lead to deadlock

 Referred to as the banker’s algorithm

 State of the system reflects the current allocation of

resources to processes

 Safe state is one in which there is at least one sequence of

resource allocations to processes that does not result in a

deadlock

 Unsafe state is a state that is not safe

 R1 R2 R3 R1 R2 R3 R1 R2 R3

P1 3 2 2 P1 1 0 0 P1 2 2 2

P2 6 1 3 P2 6 1 2 P2 0 0 1

P3 3 1 4 P3 2 1 1 P3 1 0 3

P4 4 2 2 P4 0 0 2 P4 4 2 0

 Claim matrix C Allocation matrix A C – A

R1 R2 R3 R1 R2 R3

9 3 6 0 1 1

Resource vector R Available vector V

(a) Initial state

Figure 6.7 Determination of a Safe State

 R1 R2 R3 R1 R2 R3 R1 R2 R3

P1 3 2 2 P1 1 0 0 P1 2 2 2

P2 0 0 0 P2 0 0 0 P2 0 0 0

P3 3 1 4 P3 2 1 1 P3 1 0 3

P4 4 2 2 P4 0 0 2 P4 4 2 0

 Claim matrix C Allocation matrix A C – A

R1 R2 R3 R1 R2 R3

9 3 6 6 2 3

Resource vector R Available vector V

(b) P2 runs to completion

Figure 6.7 Determination of a Safe State

 R1 R2 R3 R1 R2 R3 R1 R2 R3

P1 0 0 0 P1 0 0 0 P1 0 0 0

P2 0 0 0 P2 0 0 0 P2 0 0 0

P3 3 1 4 P3 2 1 1 P3 1 0 3

P4 4 2 2 P4 0 0 2 P4 4 2 0

 Claim matrix C Allocation matrix A C – A

R1 R2 R3 R1 R2 R3

9 3 6 7 2 3

Resource vector R Available vector V

(c) P1 runs to completion

Figure 6.7 Determination of a Safe State

 R1 R2 R3 R1 R2 R3 R1 R2 R3

P1 0 0 0 P1 0 0 0 P1 0 0 0

P2 0 0 0 P2 0 0 0 P2 0 0 0

P3 0 0 0 P3 0 0 0 P3 0 0 0

P4 4 2 2 P4 0 0 2 P4 4 2 0

 Claim matrix C Allocation matrix A C – A

R1 R2 R3 R1 R2 R3

9 3 6 9 3 4

Resource vector R Available vector V

(d) P3 runs to completion
(d) P3 runs to completion

Figure 6.7 Determination of a Safe State

 R1 R2 R3 R1 R2 R3 R1 R2 R3

P1 3 2 2 P1 1 0 0 P1 2 2 2

P2 6 1 3 P2 5 1 1 P2 1 0 2

P3 3 1 4 P3 2 1 1 P3 1 0 3

P4 4 2 2 P4 0 0 2 P4 4 2 0

 Claim matrix C Allocation matrix A C – A

R1 R2 R3 R1 R2 R3

9 3 6 1 1 2

Resource vector R Available vector V

(a) Initial state

 R1 R2 R3 R1 R2 R3 R1 R2 R3

P1 3 2 2 P1 2 0 1 P1 1 2 1

P2 6 1 3 P2 5 1 1 P2 1 0 2

P3 3 1 4 P3 2 1 1 P3 1 0 3

P4 4 2 2 P4 0 0 2 P4 4 2 0

 Claim matrix C Allocation matrix A C – A

R1 R2 R3 R1 R2 R3

9 3 6 0 1 1

Resource vector R Available vector V

(b) P1 requests one unit each of R1 and R3

Figure 6.8 Determination of an Unsafe State
Figure 6.8 Determination of an Unsafe State

 It is not necessary to preempt and rollback processes, as in

deadlock detection

 It is less restrictive than deadlock prevention

• Maximum resource requirement for each process
must be stated in advance

• Processes under consideration must be independent
and with no synchronization requirements

• There must be a fixed number of resources to allocate

• No process may exit while holding resources

Deadlock Strategies

Deadlock prevention strategies are very
conservative

• limit access to resources by imposing restrictions on
processes

Deadlock detection strategies do the
opposite

• resource requests are granted whenever possible

Deadline Detection
Algorithms

 A check for deadlock can

be made as frequently as

each resource request or,

less frequently, depending

on how likely it is for a

deadlock to occur

Advantages:

• it leads to early
detection

• the algorithm is
relatively simple

Disadvantage

• frequent checks
consume
considerable
processor time

Recovery Strategies

 Abort all deadlocked processes

 Back up each deadlocked process to some previously defined

checkpoint and restart all processes

 Successively abort deadlocked processes until deadlock no longer

exists

 Successively preempt resources until deadlock no longer exists

Approach
Resource Allocation

Policy
Different Schemes Major Advantages

Major

Disadvantages

Requesting all resources at

once

•Works well for

processes that perform a
single burst of activity

•No preemption
necessary

•Inefficient

•Delays process
initiation

•Future resource
requirements must

be known by
processes

Preemption

•Convenient when

applied to resources
whose state can be

saved and restored
easily

•Preempts more

often than necessary

Prevention
Conservative;

undercommits

resources

Resource ordering

•Feasible to enforce via
compile-time checks

•Needs no run-time
computation since

problem is solved in

system design

•Disallows
incremental

resource requests

Avoidance
Midway between that

of detection and
prevention

Manipulate to find at least

one safe path

•No preemption

necessary

•Future resource

requirements must
be known by OS

•Processes can be
blocked for long

periods

Detection

Very liberal;

requested resources
are granted where

possible

Invoke periodically to test

for deadlock

•Never delays process

initiation
•Facilitates online

handling

•Inherent preemption

losses

Summary of

Deadlock

Detection,

Prevention, and

Avoidance

Approaches for

Operating

Systems

