
IT 540 Operating Systems
ECE519 Advanced Operating

Systems

Prof. Dr. Hasan Hüseyin BALIK

(5th Week)

5. Concurrency:

Mutual Exclusion

and Synchronization

(Advanced)

Operating

Systems

5. Outline
• Principles of Concurrency

• Mutual Exclusion: Hardware Support

• Semaphores

• Monitors

• Message Passing

Operating System design is concerned

with the management of processes and

threads:

Multiprogramming

Multiprocessing

Distributed Processing

Multiple
Applications

invented to allow
processing time to
be shared among

active applications

Structured
Applications

extension of
modular design
and structured
programming

Operating
System

Structure

OS themselves
implemented as a
set of processes

or threads

 Interleaving and overlapping

 can be viewed as examples of concurrent processing

 both present the same problems

 Uniprocessor – the relative speed of execution of

processes cannot be predicted

 depends on activities of other processes

 the way the OS handles interrupts

 scheduling policies of the OS

Sharing of global resources

Difficult for the OS to manage the allocation

of resources optimally

Difficult to locate programming errors as

results are not deterministic and

reproducible

Occurs when multiple processes or

threads read and write data items

The final result depends on the order of

execution

 the “loser” of the race is the process

that updates last and will determine the

final value of the variable

Operating System Concerns

 Design and management issues raised by the existence of

concurrency:

 The OS must:

be able to keep track of various processes

allocate and de-allocate resources for each active process

protect the data and physical resources of each process
against interference by other processes

ensure that the processes and outputs are independent of the
processing speed

Resource Competition

Concurrent processes come into conflict when they

are competing for use of the same resource

 for example: I/O devices, memory, processor time, clock

In the case of competing processes three
control problems must be faced:

• the need for mutual exclusion

• deadlock

• starvation

 Must be enforced

 A process that halts must do so without
interfering with other processes

 No deadlock or starvation

 A process must not be denied access to a critical section
when there is no other process using it

 No assumptions are made about relative process speeds
or number of processes

 A process remains inside its critical section for a finite
time only

 Interrupt Disabling

 uniprocessor system

 disabling interrupts

guarantees mutual

exclusion

 Disadvantages:

 the efficiency of

execution could be

noticeably degraded

 this approach will not

work in a

multiprocessor

architecture

Compare&Swap Instruction

 also called a “compare and exchange

instruction”

 a compare is made between a memory value

and a test value

 if the values are the same a swap occurs

 carried out atomically

 Applicable to any number of processes on
either a single processor or multiple
processors sharing main memory

 Simple and easy to verify

 It can be used to support multiple critical
sections; each critical section can be defined
by its own variable

Special Machine Instruction:

Disadvantages

 Busy-waiting is employed, thus while a

process is waiting for access to a critical

section it continues to consume processor

time

 Starvation is possible when a process

leaves a critical section and more than

one process is waiting

 Deadlock is possible

Common

Concurrency

Mechanisms

Semaphore An integer value used for signaling among processes. Only three

operations may be performed on a semaphore, all of which are

atomic: initialize, decrement, and increment. The decrement

operation may result in the blocking of a process, and the increment
operation may result in the unblocking of a process. Also known as a

counting semaphore or a general semaphore

Binary Semaphore A semaphore that takes on only the values 0 and 1.

Mutex Similar to a binary semaphore. A key difference between the two is

that the process that locks the mutex (sets the value to zero) must be

the one to unlock it (sets the value to 1).

Condition Variable A data type that is used to block a process or thread until a particular

condition is true.

Monitor A programming language construct that encapsulates variables,

access procedures and initialization code within an abstract data type.

The monitor's variable may only be accessed via its access

procedures and only one process may be actively accessing the

monitor at any one time. The access procedures are critical sections.

A monitor may have a queue of processes that are waiting to access
it.

Event Flags A memory word used as a synchronization mechanism. Application

code may associate a different event with each bit in a flag. A thread

can wait for either a single event or a combination of events by
checking one or multiple bits in the corresponding flag. The thread is

blocked until all of the required bits are set (AND) or until at least

one of the bits is set (OR).

Mailboxes/Messages A means for two processes to exchange information and that may be

used for synchronization.

Spinlocks Mutual exclusion mechanism in which a process executes in an

infinite loop waiting for the value of a lock variable to indicate
availability.

Semaphore

• There is no way to inspect or
manipulate semaphores other
than these three operations

A variable that has
an integer value
upon which only

three operations are
defined:

1) May be initialized to a nonnegative integer value

2) The semWait operation decrements the value

3) The semSignal operation increments the value

Consequences

There is no way to
know before a

process decrements
a semaphore

whether it will
block or not

There is no way to
know which process

will continue
immediately on a

uniprocessor system
when two processes

are running
concurrently

You don’t know
whether another

process is waiting so
the number of

unblocked processes
may be zero or one

A queue is used to hold processes waiting on the semaphore

• the process that has been blocked the longest is
released from the queue first (FIFO)

Strong Semaphores

• the order in which processes are removed from the
queue is not specified

Weak Semaphores

Monitors

 Programming language construct that provides
equivalent functionality to that of semaphores and is
easier to control

 Implemented in a number of programming
languages

 including Concurrent Pascal, Pascal-Plus, Modula-2,
Modula-3, and Java

 Has also been implemented as a program library

 Software module consisting of one or more
procedures, an initialization sequence, and local
data

Monitor Characteristics

Only one process may be executing in the monitor at a time

Process enters monitor by invoking one of its procedures

Local data variables are accessible only by the monitor’s
procedures and not by any external procedure

Synchronization

 Achieved by the use of condition variables that are

contained within the monitor and accessible only

within the monitor

 Condition variables are operated on by two

functions:

 cwait(c): suspend execution of the calling process on

condition c

 csignal(c): resume execution of some process blocked

after a cwait on the same condition

 When processes interact with one another two

fundamental requirements must be satisfied:

 Message Passing is one approach to providing both

of these functions

 works with distributed systems and shared memory multiprocessor and

uniprocessor systems

synchronization

• to enforce mutual
exclusion

communication

• to exchange
information

Message Passing

 The actual function is normally provided in the form

of a pair of primitives:

send (destination, message)

receive (source, message)

 A process sends information in the form of a message

to another process designated by a destination

 A process receives information by executing the
receive primitive, indicating the source and the

message

Synchronization
 Send
 blocking
 nonblocking
 Receive
 blocking
 nonblocking
 test for arrival

Addressing
 Direct
 send
 receive
 explicit
 implicit
 Indirect
 static
 dynamic
 ownership

Format
 Content
 Length
 fixed
 variable

Queueing Discipline
 FIFO
 Priority

Design Characteristics of Message Systems for

Interprocess Communication and Synchronization

Both sender and receiver are blocked until

the message is delivered

Sometimes referred to as a rendezvous

Allows for tight synchronization between

processes

Nonblocking Send

• sender continues on but receiver is blocked until the
requested message arrives

• most useful combination

• sends one or more messages to a variety of destinations as
quickly as possible

• example -- a service process that exists to provide a service
or resource to other processes

Nonblocking send, blocking receive

• neither party is required to wait

Nonblocking send, nonblocking receive

 Schemes for specifying processes in send

and receive primitives fall into two

categories:

Direct
addressing

Indirect
addressing

Direct Addressing
 Send primitive includes a specific identifier

of the destination process

 Receive primitive can be handled in one of
two ways:

 require that the process explicitly
designate a sending process

 effective for cooperating concurrent processes

 implicit addressing
 source parameter of the receive primitive possesses a

value returned when the receive operation has been
performed

Indirect Addressing

Messages are sent to a
shared data structure

consisting of queues that
can temporarily hold

messages

Queues are
referred to as
mailboxes

One process sends a
message to the mailbox
and the other process
picks up the message

from the mailbox

Allows for
greater flexibility

in the use of
messages

S1

Sn

R1

Rm

Mailbox

S1

Sn

R1Port

Figure 5.18 Indirect Process Communication

(b) Many to one

S1 R1Mailbox

S1

(a) One to one

(d) Many to many

R1

Rm

Mailbox

(c) One to many

Message Type

Destination ID

Source IDHeader

Body

Figure 5.19 General Message Format

Message Length

Control Information

Message Contents

