
IT 540 Operating Systems
ECE519 Advanced Operating

Systems

Prof. Dr. Hasan Hüseyin BALIK

(4th Week)

4. Threads

(Advanced)

Operating

Systems

4. Outline
• Processes and Threads

• Types of Threads

• Multicore and Multithreading

Processes and Threads

Resource Ownership

Process includes a

virtual address space

to hold the process

image

 the OS performs a

protection function to

prevent unwanted

interference between

processes with respect to

resources

Scheduling/Execution

Follows an execution path

that may be interleaved

with other processes

 a process has an execution state

(Running, Ready, etc.) and a

dispatching priority and is

scheduled and dispatched by

the OS

Processes and Threads

 The unit of dispatching is referred to as a thread or

lightweight process

 The unit of resource ownership is referred to as a

process or task

 Multithreading - The ability of an OS to support

multiple, concurrent paths of execution within a

single process

Single Threaded Approaches

 A single thread of

execution per process,

in which the concept

of a thread is not

recognized, is referred

to as a single-threaded

approach

 MS-DOS is an

example Figure 4.1 Threads and Processes

one process

one thread

one process

multiple threads

multiple processes

one thread per process

= instruction trace

multiple processes

multiple threads per process

Multithreaded Approaches

 The right half of

Figure 4.1 depicts

multithreaded

approaches

 A Java run-time

environment is an

example of a system

of one process with

multiple threads
Figure 4.1 Threads and Processes

one process

one thread

one process

multiple threads

multiple processes

one thread per process

= instruction trace

multiple processes

multiple threads per process

Processes

The unit or resource allocation and a unit of

protection

A virtual address space that holds the process image

Protected access to:

 processors

 other processes

 files

 I/O resources

One or More Threads
in a Process

• an execution state (Running, Ready, etc.)

• saved thread context when not running

• an execution stack

• some per-thread static storage for local
variables

• access to the memory and resources of its
process (all threads of a process share this)

Each thread has:

Single-Threaded

Process Model

Process

Control

Block

User

Address

Space

User

Stack

Kernel

Stack

Multithreaded

Process Model

Process

Control

Block

User

Address

Space

User

Stack

Kernel

Stack

User

Stack

Kernel

Stack

User

Stack

Kernel

Stack

Thread

Control

Block

Thread Thread Thread

Figure 4.2 Single Threaded and Multithreaded Process Models

Thread

Control

Block

Thread

Control

Block

Benefits of Threads

Takes less
time to

create a new
thread than a

process

Less time to
terminate a

thread than a
process

Switching
between two

threads takes less
time than

switching between
processes

Threads enhance
efficiency in

communication
between programs

Thread Use in a
Single-User System

Foreground and background work

Asynchronous processing

Speed of execution

Modular program structure

 Most of the state information dealing with
execution is maintained in thread-level data
structures

 In an OS that supports threads, scheduling and
dispatching is done on a thread basis

suspending a process involves suspending all
threads of the process

termination of a process terminates all
threads within the process

The key states for a

thread are:

 Running

 Ready

 Blocked

Thread operations

associated with a

change in thread

state are:

 Spawn

 Block

 Unblock

 Finish

Time

Blocked

I/O

request

Thread A (Process 1)

Thread B (Process 1)

Thread C (Process 2)

Figure 4.4 Multithreading Example on a Uniprocessor

Ready Running

Request

complete

Time quantum

expires

Time quantum

expires

Process

created

Thread Synchronization

 It is necessary to synchronize the activities of

the various threads

 all threads of a process share the same

address space and other resources

 any alteration of a resource by one thread

affects the other threads in the same process

Types of Threads

User Level
Thread (ULT)

Kernel level
Thread (KLT)

User-Level Threads (ULTs)

 All thread

management is

done by the

application

 The kernel is not

aware of the

existence of threads

Figure 4.5 User-Level and Kernel-Level Threads

P P

User

Space
Threads

Library

Kernel

Space

P

P

User

Space

Kernel

Space

P

User

Space
Threads

Library

Kernel

Space

(c) Combined(b) Pure kernel-level(a) Pure user-level

User-level thread Kernel-level thread Process

Thread switching does not
require kernel mode
privileges

Scheduling can be
application specific

ULTs
can run
on any
OS

Disadvantages of ULTs

 In a typical OS many system calls are blocking

 as a result, when a ULT executes a system

call, not only is that thread blocked, but all

of the threads within the process are blocked

 In a pure ULT strategy, a multithreaded

application cannot take advantage of

multiprocessing

Overcoming ULT
Disadvantages

Jacketing

• converts a blocking system call
into a non-blocking system call

Writing an application
as multiple processes
rather than multiple
threads

Kernel-Level Threads (KLTs)

 Thread management is

done by the kernel

 no thread management

is done by the

application

 Windows is an

example of this

approach

Figure 4.5 User-Level and Kernel-Level Threads

P P

User

Space
Threads

Library

Kernel

Space

P

P

User

Space

Kernel

Space

P

User

Space
Threads

Library

Kernel

Space

(c) Combined(b) Pure kernel-level(a) Pure user-level

User-level thread Kernel-level thread Process

Advantages of KLTs

 The kernel can simultaneously schedule multiple

threads from the same process on multiple

processors

 If one thread in a process is blocked, the kernel

can schedule another thread of the same process

 Kernel routines can be multithreaded

Disadvantage of KLTs
The transfer of control from one thread to another

within the same process requires a mode switch to

the kernel

Combined Approaches

 Thread creation is done in

the user space

 Bulk of scheduling and

synchronization of threads

is by the application

 Solaris is an example

Figure 4.5 User-Level and Kernel-Level Threads

P P

User

Space
Threads

Library

Kernel

Space

P

P

User

Space

Kernel

Space

P

User

Space
Threads

Library

Kernel

Space

(c) Combined(b) Pure kernel-level(a) Pure user-level

User-level thread Kernel-level thread Process

Threads:Processes Description Example Systems

1:1 Each thread of execution is a

unique process with its own

address space and resources.

Traditional UNIX

implementations

M:1 A process defines an address

space and dynamic resource
ownership. Multiple threads

may be created and executed

within that process.

Windows NT, Solaris, Linux,

OS/2, OS/390, MACH

1:M A thread may migrate from

one process environment to

another. This allows a thread

to be easily moved among
distinct systems.

Ra (Clouds), Emerald

M:N Combines attributes of M:1

and 1:M cases.

TRIX

Relationship between Threads and Processes

