IT 540 Operating Systems
ECES519 Advanced Operating
Systems

Prof. Dr. Hasan Hiiseyin BALIK

(4™ Week)

|
|

‘(Advanced)

Operating |
Systems

4. Threads

e Processes and Threads
e Types of Threads
e Multicore and Multithreading

Processes and Threads

Resource Ownership Scheduling/Execution
Process includes a Follows an execution path
virtual address space that may be interleaved
to hold the process with other processes
image m a process has an execution state

(Running, Ready, etc.) and a
dispatching priority and is
scheduled and dispatched by
the OS

m the OS performs a
protection function to
prevent unwanted
interference between
processes with respect to
resources

Processes and Threads

m The unit of dispatching is referred to as a thread or
lightweight process

m The unit of resource ownership 1s referred to as a
process Or task

m Multithreading - The ability of an OS to support
multiple, concurrent paths of execution within a
single process

Single Threaded Approaches

m A single thread of

execution per process, s S s

in which the concept

of a thread is not A T A A
recognized, is referred

to as a single-threaded
approach Bpeimi 2 ;

. MS -D O S iS an g = instruction trace
example Figure 4.1 Threads and Processes

Multithreaded Approaches

m The right half of :
Figure 4.1 depicts S S 5
multithreaded i

one process
multiple threads

ADPIOACHESHL" - = /g vt ; s

T
5

e X a m pl e O f a Sy St em one thread per process multiple threads per process
of one process With {. e
mUItiple threads Figure 4.1 Threads and Processes

+ ~Processes

® The unit or resource allocation and a unit of
protection

® A virtual address space that holds the process image

" Protected access to:
" Processors B¢

|)
= other processes L A3

= files

= /0O resources

One or More Threads
in a Process

==
Each thread has: o) © J
C y

 an execution state (Running, Ready, etc.)
» saved thread context when not running
* an execution stack

» some per-thread static storage for local
variables

* access to the memory and resources of 1ts
process (all threads of a process share this)

Single-Threaded
Process Model

Process User
Control Stack
Block
User Kernel
Address Stack
Space

Multithreaded
Process Model
Thread Thread Thread
r——=—=— = _| r——=—=— = _| r——=—=— = _|
: Thread : : Thread : : Thread :
(| Control [(| Control || (| Control |,
: Block |! : Block |! : Block |!
I : I : I :
| [[|
I (- (- I
I I I
Process | (| User : /| User : /| User :
Control | | Stack | ! Stack | ! Stack |
I I I
Block | (- (- I
| | | |
I | | I
I (- (- I
User : Kernel : : Kernel : : Kernel :
Address | || Stack | \| Stack | \| Stack |
Space ' ro ! ro ! |
| | | |

Figure 4.2 Single Threaded and Multithreaded Process Models

Benefits of Threads

Takes less
time to
create a new
thread than a
process

Less time to
terminate a
thread than a
process

Switching
between two
threads takes less
time than
switching between
processes

Threads enhance
efficiency in
communication
between programs

~ Thread Use in a

Smgle-User System

mForeground and background work

m Asynchronous processing
mSpeed of execution

m Modular program structure

\‘\,\‘3 i 0
U

s

i
(1

Threads

m In an OS that supports threads, scheduling and
dispatching 1s done on a thread basis

m Most of the state information dealing with
execution 1s maintained in thread-level data
structures

ssuspending a process involves suspending all

threads of the process
stermination of a process terminates all
threads within the process %ﬁ

SA.

Thread Execution States

The key states for a
thread are:

m Running
m Ready
m Blocked

Thread operations
associated with a
change 1n thread
state are:

m Spawn
m Block

m Unblock
m Finish

Time >

/O Request Time quantum
request complete expires

Thread A (Process 1) :u | +

Thread B (Process 1) | [I

%

Thread C (Process 2) Time ql.lantum |
expires /'
Process
created
B Blocked 1 Ready 1 Running

Figure 4.4 Multithreading Example on a Uniprocessor

Thread Synchronization

m It 1s necessary to synchronize the activities of
the various threads

m all threads of a process share the same
address space and other resources

m any alteration of a resource by one thread
affects the other threads in the same process

* Types of Threads

User Level
Thread (ULT)

Kernel level
Thread (KLT)

User-Level Threads (ULTSs)

m All thread

management 1S
done by the
application

m The kernel is not
aware of the

existence of threads

S

N/

0 ¢

Threads
Library

\\// User

Space

Kernel
Space

®

(a) Pure user-level

Advantages of ULTs

ULTs

Scheduling can be gertlnarnun
application specific Y
2 &)
Thread switching does not E
require kernel mode

privileges

Disadvantages of ULTs

m In a typical OS many system calls are blocking

= as a result, when a ULT executes a system
call, not only 1s that thread blocked, but all
of the threads within the process are blocked

m In a pure ULT strategy, a multithreaded
application cannot take advantage of

multiprocessing o
A

Overcoming ULT
Disadvantages

Jacketing

 converts a blocking system call
into a non-blocking system call

Writing an application
as multiple processes
rather than multiple
threads

Kernel-Level Threads (KLTs)
e T

* Thread management 1s
User done by the kernel

Space
* no thread management
Igle);‘lz‘ is done by the
S 5 S application

= Windows 1s an
example of this
approach

(b) Pure kernel-level

Advantages of KLTs

m The kernel can simultaneously schedule multiple
threads from the same process on multiple
Processors

m If one thread in a process 1s blocked, the kernel
can schedule another thread of the same process

m Kernel routines can be multithreaded =2

Disadvantage of KLTs

H The transfer of control from one thread to another
within the same process requires a mode switch to
the kernel

Combined Approaches

m Thread creation 1s done in \ /
the user space Threads Lser
Library Space

m Bulk of scheduling and
synchronization of threads

1s by the application ‘, (’ Q)

m Solaris 1s an example

(¢) Combined

Threads:Processes

Description

Example Systems

1:1

1:M

Each thread of execution is a
unigue process with its own
address space and resources.

A process defines an address
space and dynamic resource
ownership. Multiple threads
may be created and executed
within that process.

A thread may migrate from
one process environment to
another. This allows a thread

to be easily moved among
distinct systems.

Combines attributes of M:1
and 1:M cases.

Traditional UNIX
implementations

Windows NT, Solaris, Linux,
0S/2, 0S/390, MACH

Ra (Clouds), Emerald

TRIX

Relationship between Threads and Processes

