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4. Outline
• Processes and Threads

• Types of Threads

• Multicore and Multithreading



Processes and Threads

Resource Ownership

Process includes a 

virtual address space 

to hold the process 

image

 the OS performs a 

protection function to 

prevent unwanted 

interference between 

processes with respect to 

resources

Scheduling/Execution

Follows an execution path 

that may be interleaved 

with other processes

 a process has an execution state 

(Running, Ready, etc.) and a 

dispatching priority and is 

scheduled and dispatched by 

the OS



Processes and Threads

 The unit of  dispatching is referred to as a thread or 

lightweight process

 The unit of  resource ownership is referred to as a 

process or task

 Multithreading - The ability of  an OS to support 

multiple, concurrent paths of  execution within a 

single process



Single Threaded Approaches

 A single thread of  

execution per process, 

in which the concept 

of  a thread is not 

recognized, is referred 

to as a single-threaded 

approach

 MS-DOS is an 

example Figure 4.1   Threads and Processes
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Multithreaded Approaches

 The right half  of  

Figure 4.1 depicts 

multithreaded 

approaches

 A Java run-time 

environment is an 

example of  a system 

of  one process with 

multiple threads
Figure 4.1   Threads and Processes
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Processes

The unit or resource allocation and a unit of  

protection

A virtual address space that holds the process image

Protected access to:

 processors

 other processes 

 files

 I/O resources



One or More Threads 
in a Process

• an execution state (Running, Ready, etc.)

• saved thread context when not running

• an execution stack

• some per-thread static storage for local 
variables

• access to the memory and resources of  its 
process (all threads of  a process share this)

Each thread has:
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Figure 4.2   Single Threaded and Multithreaded Process Models

Thread

Control

Block

Thread

Control

Block



Benefits of  Threads

Takes less 
time to 

create a new 
thread than a 

process

Less time to 
terminate a 

thread than a 
process

Switching 
between two 

threads takes less 
time than 

switching between 
processes

Threads enhance 
efficiency in 

communication 
between programs



Thread Use in a 
Single-User System

Foreground and background work

Asynchronous processing

Speed of  execution

Modular program structure



 Most of  the state information dealing with 
execution is maintained in thread-level data 
structures

 In an OS that supports threads, scheduling and 
dispatching is done on a thread basis

suspending a process involves suspending all      
threads of  the process 

termination of  a process terminates all         
threads within the process



The key states for a 

thread are:

 Running

 Ready

 Blocked

Thread operations 

associated with a 

change in thread 

state are:

 Spawn

 Block

 Unblock

 Finish
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Figure 4.4    Multithreading Example on a Uniprocessor
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Thread Synchronization

 It is necessary to synchronize the activities of  

the various threads

 all threads of  a process share the same 

address space and other resources

 any alteration of  a resource by one thread 

affects the other threads in the same process



Types of Threads

User Level 
Thread (ULT)

Kernel level 
Thread (KLT) 



User-Level Threads (ULTs)

 All thread 

management is 

done by the 

application

 The kernel is not 

aware of  the 

existence of  threads

Figure 4.5  User-Level and Kernel-Level Threads
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Thread switching does not 
require kernel mode 
privileges

Scheduling can be 
application specific

ULTs 
can run 
on any 
OS



Disadvantages of ULTs

 In a typical OS many system calls are blocking 

 as a result, when a ULT executes a system 

call, not only is that thread blocked, but all 

of  the threads within the process are blocked

 In a pure ULT strategy, a multithreaded 

application cannot take advantage of  

multiprocessing



Overcoming ULT 
Disadvantages

Jacketing

• converts a blocking system call 
into a non-blocking system call

Writing an application 
as multiple processes 
rather than multiple 
threads



Kernel-Level Threads (KLTs)

 Thread management is 

done by the kernel

 no thread management 

is done by the 

application

 Windows is an 

example of  this 

approach

Figure 4.5  User-Level and Kernel-Level Threads
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Advantages of KLTs

 The kernel can simultaneously schedule multiple 

threads from the same process on multiple 

processors 

 If  one thread in a process is blocked, the kernel 

can schedule another thread of  the same process

 Kernel routines can be multithreaded



Disadvantage of KLTs
The transfer of control from one thread to another 

within the same process requires a mode switch to 

the kernel



Combined Approaches

 Thread creation is done in 

the user space

 Bulk of  scheduling and 

synchronization of  threads 

is by the application

 Solaris is an example

Figure 4.5  User-Level and Kernel-Level Threads
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Threads:Processes Description Example Systems 

1:1 Each thread of execution is a 

unique process with its own 

address space and resources. 

Traditional UNIX 

implementations 

M:1 A process defines an address 

space and dynamic resource 
ownership. Multiple threads 

may be created and executed 

within that process. 

Windows NT, Solaris, Linux, 

OS/2, OS/390, MACH 

1:M A thread may migrate from 

one process environment to 

another. This allows a thread 

to be easily moved among 
distinct systems. 

Ra (Clouds), Emerald 

M:N Combines attributes of M:1 

and 1:M cases. 

TRIX 

 

Relationship between Threads and Processes 


