
Prof. Dr. Hasan Hüseyin BALIK

(3rd Week)

IT 540 Operating Systems

ECE519 Advanced Operating 

Systems



3. Process Description 

and Control

(Advanced) 

Operating 

Systems



3. Outline
• What Is a Process?

• Process States

• Process Description

• Process Control

• Execution of the Operating System



 A computer platform 
consists of  a collection 
of  hardware resources

 Computer applications 
are developed to 
perform some task

 It is inefficient for 
applications to be 
written directly for a 
given hardware platform

 The OS was developed to 

provide a convenient, 

feature-rich, secure, and 

consistent interface for 

applications to use

 We can think of  the OS as 

providing a uniform, 

abstract representation of  

resources that can be 

requested and accessed by 

applications



OS Management of  
Application Execution

Resources are made available to multiple 
applications

The processor is switched among multiple 
applications so all will appear to be 
progressing

The processor and I/O devices can be 
used efficiently



Process Elements

 Two essential elements of  a process are:

 when the processor begins to execute the program code, we refer to 

this executing entity as a process

Program code

 which may be shared with other processes that are executing 
the same program

A set of  data associated with that code



 While the program is executing, this process can be uniquely 
characterized by a number of  elements, including:

identifier

state priority
program 
counter

memory 
pointers

context data
I/O status 

information
accounting 
information



Process Control 

Block

Contains the process elements

It is possible to interrupt a running 

process and later resume execution as 

if  the interruption had not occurred

Created and managed by the 

operating system

Key tool that allows support for 

multiple processes

Identifier

Figure 3.1  Simplified Process Control Block

State

Priority

Program counter

Memory pointers

Context data

I/O status

information

Accounting

information



Process States

Trace

the behavior of  an 
individual process 

by listing the 
sequence of  

instructions that 
execute for that 

process

the behavior of  the processor 
can be characterized by 

showing how the traces of  
the various processes are 

interleaved

Dispatcher

small program 
that switches the 
processor from 
one process to 

another



Two-State Process Model

Not

Running Running

Figure 3.5   Two-State Process Model

Dispatch

Dispatch

Queue

Enter Exit

Pause

Pause

Enter Exit

(a) State transition diagram

(b) Queuing diagram

Processor



Process 
Execution

Main MemoryAddress

Dispatcher

Process A

Process B

Process C

Program Counter
0

100

5000

8000

8000

12000

Figure 3.2  Snapshot of Example Execution (Figure 3.4)

at Instruction Cycle 13



5000 

5001 

5002 

5003 

5004 

5005 

5006 

5007 

5008 

5009 

5010 

5011 

8000 

8001 

8002 

8003 

 

12000 

12001 

12002 

12003 

12004 

12005 

12006 

12007 

12008 

12009 

12010 

12011 

 (a) Trace of Process A (b) Trace of Process B (c) Trace of Process C 
 

5000 = Starting address of program of Process A 

8000 = Starting address of program of Process B 

12000 = Starting address of program of Process C 

 

 

 

Figure 3.3   Traces of Processes of Figure 3.2 



1 5000 

2 5001 

3 5002 

4 5003 

5 5004 

6 5005 

-------------------- Timeout 

7 100 

8 101 

9 102 

10 103 

11 104 

12 105 

13 8000 

14 8001 

15 8002 

16 8003 

----------------I/O Request 

17 100 

18 101 

19 102 

20 103 

21 104 

22 105 

23 12000 

24 12001 

25 12002 

26 12003 

 

27 12004 

28 12005 

-------------------- Timeout 

29 100 

30 101 

31 102 

32 103 

33 104 

34 105 

35 5006 

36 5007 

37 5008 

38 5009 

39 5010 

40 5011 

-------------------- Timeout 

41 100 

42 101 

43 102 

44 103 

45 104 

46 105 

47 12006 

48 12007 

49 12008 

50 12009 

51 12010 

52 12011 

-------------------- Timeout 

 

 

 100 = Starting address of dispatcher program 

 Shaded areas indicate execution of dispatcher process; 
 first and third columns count instruction cycles; 

 second and fourth columns show address of instruction being executed 

 

Figure 3.4  Combined Trace of Processes of Figure 3.2 



Not

Running Running

Figure 3.5   Two-State Process Model

Dispatch

Dispatch

Queue

Enter Exit

Pause

Pause

Enter Exit

(a) State transition diagram

(b) Queuing diagram

Processor



Reasons for Process Creation



Process Creation

Process 
spawning

• when the 
OS creates a 
process at 
the explicit 
request of  
another 
process

Parent process

• is the 
original, 
creating, 
process

Child process 

• is the new 
process



Process Termination

 There must be a means for a process to indicate its 

completion

 A batch job should include a HALT instruction or an 

explicit OS service call for termination

 For an interactive application, the action of  the user will 

indicate when the process is completed  (e.g. log off, 

quitting an application)



Five-State Process Model

New Ready

Blocked

Running Exit

Figure 3.6   Five-State Process Model

Admit
Dispatch

Timeout

Release

Event

Wait

Event

Occurs



Dispatcher

= Running = Ready

Figure 3.7   Process States for Trace of Figure 3.4

= Blocked

0 5 10 15 20 25 30 35 40 45 50

Process C

Process B

Process A



Figure 3.8  Queuing Model for Figure 3.6

Dispatch

Timeout

Event Wait

Event 1 Wait

Event 2 Wait

Event n Wait

Event

Occurs

Ready Queue

Blocked Queue

Admit
Release

Processor

Dispatch

ReleaseReady Queue
Admit

Processor

Timeout

Event 1 Queue

Event 1

Occurs

Event 2

Occurs

Event n

Occurs

Event 2 Queue

Event n Queue

(a) Single blocked queue

(b) Multiple blocked queues



 Swapping

 involves moving part of  all of  a process from main memory to disk

 when none of  the processes in main memory is in the Ready state, the 
OS swaps one of  the blocked processes out on to disk into a suspend 
queue



E
v

en
t

O
cc

u
rs

New

Suspend

Ready

Blocked

Running Exit

Figure 3.9  Process State Transition Diagram with Suspend States

Admit

(a) With One Suspend State

Suspend

E
ve

nt W
ai

t

E
v

en
t

O
cc

u
rs

A
ct

iv
at

e

Dispatch

Timeout

Release

Ready/

Suspend

New

Ready

Blocked

Running Exit

A
d
m

it

A
d
m

it

(b) With Two Suspend States

E
ve

nt W
ai

t

E
v

en
t

O
cc

u
rs

Dispatch

Timeout

Activate

Suspend

Suspend

Activate

Suspend

Release

Blocked/

Suspend

E
v

en
t

O
cc

u
rs

New

Suspend

Ready

Blocked

Running Exit

Figure 3.9  Process State Transition Diagram with Suspend States

Admit

(a) With One Suspend State

Suspend

E
ve

nt W
ai

t

E
v

en
t

O
cc

u
rs

A
ct

iv
at

e

Dispatch

Timeout

Release

Ready/

Suspend

New

Ready

Blocked

Running Exit

A
d
m

it

A
d
m

it

(b) With Two Suspend States

E
ve

nt W
ai

t

E
v

en
t

O
cc

u
rs

Dispatch

Timeout

Activate

Suspend

Suspend

Activate

Suspend

Release

Blocked/

Suspend



E
v

en
t

O
cc

u
r
s

New

Suspend

Ready

Blocked

Running Exit

Figure 3.9  Process State Transition Diagram with Suspend States

Admit

(a) With One Suspend State

Suspend

E
ve

nt W
ai

t

E
v

en
t

O
cc

u
rs

A
ct

iv
at

e

Dispatch

Timeout

Release

Ready/

Suspend

New

Ready

Blocked

Running Exit

A
d
m

it

A
d
m

it

(b) With Two Suspend States

E
ve

nt W
ai

t

E
v

en
t

O
cc

u
r
s

Dispatch

Timeout

Activate

Suspend

Suspend

Activate

Suspend

Release

Blocked/

Suspend



 The process may or may 

not be waiting on an 

event

 The process may not be 

removed from this state 

until the agent explicitly 

orders the removal

 The process is not 

immediately available 

for execution

 The process was placed 

in a suspended state by 

an agent: either itself, a 

parent process, or the 

OS, for the purpose of  

preventing its execution



Reasons for Process Suspension 



Processor I/O I/O

Figure 3.10  Processes and Resources (resource allocation at one snapshot in time)

I/O
Main

Memory

Computer

Resources

Virtual

Memory

P1 P2 Pn



Memory

Devices

Files

Processes

Process 1

Memory Tables

Process

Image

Process

1

Process

Image

Process

n

I/O Tables

File Tables

Figure 3.11  General Structure of Operating System Control Tables

Primary Process Table

Process 2

Process 3

Process n



 Used to keep track of  both 

main (real) and secondary 

(virtual)  memory

 Processes are maintained 

on secondary memory 

using some sort of  virtual 

memory or simple 

swapping mechanism 



 Used by the OS to manage 

the I/O devices and 

channels of  the computer 

system

 At any given time, an I/O 

device may be available or 

assigned to a particular 

process



 Information may be maintained and used by a file management system

 in which case the OS has little or no knowledge of  files

 In other operating systems, much of  the detail of  file management is 

managed by the OS itself

• existence of  files

• location on secondary 
memory

• current status

• other attributes

These tables provide 
information about:



Must be maintained to manage processes

There must be some reference to memory,    

I/O, and files, directly or indirectly

The tables themselves must be accessible by 

the OS and therefore are subject to memory 

management



• where the 
process is 
located

• the attributes of  
the process that 
are necessary for 
its management

To manage 
and 

control a 
process the 
OS must 

know:



Process Location

 A process must include a 

program or set of  programs to be 

executed

 A process will consist of  at least 

sufficient memory to hold the 

programs and data of  that 

process

 The execution of  a program 

typically involves a stack that is 

used to keep track of  procedure 

calls and parameter passing 

between procedures 

Process Attributes

 Each process has associated with 

it a number of  attributes that are 

used by the OS for process 

control

 The collection of  program, data, 

stack, and attributes is referred to 

as the process image

 Process image location will 

depend on the memory 

management scheme being used



 Each process is assigned a 

unique numeric identifier

 otherwise there must be a 

mapping that allows the OS 

to locate the appropriate 

tables based on the process 

identifier

 Many of  the tables controlled by 

the OS may use process 

identifiers to cross-reference 

process tables

 Memory tables may be 
organized to provide a map of  
main memory with an indication 
of which process is assigned to 
each region

 similar references will appear in    
I/O and file tables

 When processes communicate 
with one another, the process 
identifier informs the OS of  the 
destination of  a particular 
communication

 When processes are allowed to 
create other processes, 
identifiers indicate the parent 
and descendents of  each 
process



• contains condition 
codes plus other 
status information

• EFLAGS register 
is an example of  a 
PSW used by any 
OS running on an 
x86 processor

Program 
status 
word 

(PSW)

• user-visible 
registers

• control and 
status 
registers

• stack 
pointers

Consists 
of  the 

contents 
of  

processor 
registers 



 The additional information                         

needed by the OS to control                             

and coordinate the various                             

active processes



Process

Identification
Process

Control

Block

Processor State

Information

Process Control

Information

User Stack

Private User

Address Space

(Programs, Data)

Shared Address

Space

Process

Identification

Process 1 Process 2 Process n

Processor State

Information

Process Control

Information

User Stack

Private User

Address Space

(Programs, Data)

Shared Address

Space

Process

Identification

Processor State

Information

Process Control

Information

User Stack

Private User

Address Space

(Programs, Data)

Shared Address

Space

Figure 3.13   User Processes in Virtual Memory



Running

Ready

Blocked

Process

Control Block

Figure 3.14  Process List Structures



 The most important data structure in an OS

 contains all of  the information about a process that is needed by the OS

 blocks are read and/or modified by virtually every module in the OS

 defines the state of  the OS

 Difficulty is not access, but protection

 a bug in a single routine could damage process control blocks, which 

could destroy the system’s ability to manage the affected processes

 a design change in the structure or semantics of  the process control 

block could affect a number of  modules in the OS



User Mode

 less-privileged mode

 user programs 

typically execute in 

this mode

System Mode

 more-privileged mode

 also referred to as 

control mode or 

kernel mode

 kernel of  the 

operating system



Typical 

Functions

of an 

Operating

System

Kernel

 

 
Process Management 

 

 •Process creation and termination 

 •Process scheduling and dispatching 

 •Process switching 

 •Process synchronization and support for interprocess communication 
 •Management of process control blocks 

 

Memory Management 

 

 •Allocation of address space to processes 

 •Swapping 

 •Page and segment management  
 

I/O Management 

 

 •Buffer management 

 •Allocation of I/O channels and devices to processes 

 

Support Functions 
 

 •Interrupt handling 

 •Accounting 

 •Monitoring 

 



 Once the OS decides to create a new process it:

assigns a unique process identifier 
to the new process

allocates space for the process

initializes the process control 
block

sets the appropriate linkages

creates or expands other data 
structures



System Interrupts

Interrupt

 Due to some sort of  event 
that is external to and 
independent of  the currently 
running process

 clock interrupt

 I/O interrupt

 memory fault

 Time slice

 the maximum amount of  
time that a process can 
execute before being 
interrupted

Trap

 An error or exception 

condition generated within 

the currently running process

 OS determines if  the 

condition is fatal

 moved to the Exit state 

and a process switch 

occurs

 action will depend on the 

nature of  the error



If  no interrupts are 
pending the processor:

proceeds to the fetch stage and fetches the 
next instruction of the current program in 

the current process

If  an interrupt is 
pending the processor:

sets the program counter to the starting 
address of an interrupt handler program

switches from user mode to kernel mode 
so that the interrupt processing code may 

include privileged instructions



 The steps in 
a full process 
switch are:

save the context of  
the processor

update the process 
control block of  

the process 
currently in the 
Running state

move the process 
control block of  

this process to the 
appropriate queue

select another 
process for 
execution

update the process 
control block of  

the process 
selected

update memory 
management data 

structures

restore the context 
of  the processor to 
that which existed 

at the time the 
selected process was 

last switched out

If  the currently running process is to be moved to 
another state (Ready, Blocked, etc.), then the OS must 
make substantial changes in its environment


