
IT 540 Operating Systems

ECE519 Advanced Operating

Systems

Prof. Dr. Hasan Hüseyin BALIK

(2nd Week)

2. Operating System

Overview

(Advanced)

Operating

Systems

2. Outline
• Operating System Objectives and Functions

• The Evolution of Operating Systems

• Major Achievements

• Developments Leading to Modern Operating Systems

• Virtual Machines

• OS Design Considerations for Multiprocessor and Multicore

Operating System

 A program that controls the execution of

application programs

 An interface between applications and hardware

Main objectives of an OS:

• convenience

• efficiency

• ability to evolve

I/O devices

and

networking

System interconnect

(bus)

Software

Application

programming interface

Instruction Set

Architecture

Hardware

Main

memory

Memory

translation

Execution hardware

Figure 2.1 Computer Hardware and Software Structure

Application programs

Application

binary interface

Operating system

Libraries/utilities

Operating System Services

 Program development

 Program execution

 Access I/O devices

 Controlled access to files

 System access

 Error detection and response

 Accounting

Key Interfaces

 Instruction set architecture (ISA) :

Application binary interface (ABI)

Application programming interface (API)

The Role of an OS

A computer is a set of resources for the

movement, storage, and processing of

data

The OS is responsible for managing

these resources

Operating System
as Software

Functions in the same way as ordinary

computer software

Program, or suite of programs, executed

by the processor

Frequently relinquishes control and must

depend on the processor to allow it to

regain control

Memory

Computer System

I/O Devices

Operating

System

Software

Programs

and Data

Processor Processor

OS

Programs

Data

Storage

I/O Controller

I/O Controller

Printers,

keyboards,

digital camera,

etc.

I/O Controller

Figure 2.2 The Operating System as Resource Manager

Evolution of Operating Systems

A major OS will evolve over time for a

number of reasons:

hardware upgrades

new types of hardware

new services

Fixes

Evolution of

Operating Systems

 Stages include:

Serial
Processing

Simple Batch
Systems

Multiprogrammed
Batch Systems

Time
Sharing
Systems

Serial Processing

Earliest Computers:

 No operating system

 programmers interacted
directly with the computer
hardware

 Computers ran from a console
with display lights, toggle
switches, some form of input
device, and a printer

 Users have access to the
computer in “series”

Problems:

 Scheduling:

 most installations used a

hardcopy sign-up sheet to

reserve computer time

 time allocations could

run short or long,

resulting in wasted

computer time

 Setup time

 a considerable amount of

time was spent just on setting

up the program to run

Simple Batch Systems

 Early computers were very expensive

 important to maximize processor utilization

 Monitor

 user no longer has direct access to processor

 job is submitted to computer operator who batches

them together and places them on an input device

 program branches back to the monitor when finished

Monitor Point of View

 Monitor controls the sequence

of events

 Resident Monitor is software

always in memory

 Monitor reads in job and gives

control

 Job returns control to monitor

Interrupt

Processing

Device

Drivers

Job

Sequencing

Control Language

Interpreter

User

Program

Area

Monitor

Boundary

Figure 2.3 Memory Layout for a Resident Monitor

Processor Point of View

 Processor executes instruction from the memory

containing the monitor

 Executes the instructions in the user program until it

encounters an ending or error condition

 “control is passed to a job” means processor is fetching and

executing instructions in a user program

 “control is returned to the monitor” means that the processor

is fetching and executing instructions from the monitor

program

Job Control Language
(JCL)

Special type of programming
language used to provide

instructions to the monitor

what compiler to use

what data to use

Desirable Hardware
Features

• while the user program is executing, it must not alter the memory area
containing the monitor

Memory protection for monitor

• prevents a job from monopolizing the system

Timer

• can only be executed by the monitor

Privileged instructions

• gives OS more flexibility in controlling user programs

Interrupts

Modes of Operation

User Mode

• user program executes in
user mode

• certain areas of memory are
protected from user access

• certain instructions may not
be executed

Kernel Mode

• monitor executes in kernel
mode

• privileged instructions may
be executed

• protected areas of memory
may be accessed

Simple Batch System
Overhead

 Processor time alternates between execution of user

programs and execution of the monitor

 Sacrifices:

 some main memory is now given over to the monitor

 some processor time is consumed by the monitor

 Despite overhead, the simple batch system improves

utilization of the computer

Multiprogrammed
Batch Systems

 Processor is

often idle

 even with

automatic

job

sequencing

 I/O devices

are slow

compared to

processor

Uniprogramming

 The processor spends a certain amount of

time executing, until it reaches an I/O

instruction; it must then wait until that I/O

instruction concludes before proceeding

Run Wait WaitRun

Time

Run Wait WaitRun

Run

A

Run

A

Run WaitWait WaitRun

Run

B
Wait Wait

Run

B

Run

A

Run

A

Run

B

Run

B

Run

C

Run

C

(a) Uniprogramming

Time

(b) Multiprogramming with two programs

Time

(c) Multiprogramming with three programs

Program A

Program A

Program B

Run Wait WaitRun

Run WaitWait WaitRun

Program A

Program B

Wait WaitCombined

Run WaitWait WaitRunProgram C

Combined

Figure 2.5 Multiprogramming Example

Multiprogramming

 There must be enough memory to hold the OS (resident

monitor) and one user program

 When one job needs to wait for I/O, the processor can switch to

the other job, which is likely not waiting for I/O

Run Wait WaitRun

Time

Run Wait WaitRun

Run

A

Run

A

Run WaitWait WaitRun

Run

B
Wait Wait

Run

B

Run

A

Run

A

Run

B

Run

B

Run

C

Run

C

(a) Uniprogramming

Time

(b) Multiprogramming with two programs

Time

(c) Multiprogramming with three programs

Program A

Program A

Program B

Run Wait WaitRun

Run WaitWait WaitRun

Program A

Program B

Wait WaitCombined

Run WaitWait WaitRunProgram C

Combined

Figure 2.5 Multiprogramming Example

Multiprogramming

 Multiprogramming

 also known as multitasking

 memory is expanded to hold three, four, or more programs
and switch among all of them

Run Wait WaitRun

Time

Run Wait WaitRun

Run

A

Run

A

Run WaitWait WaitRun

Run

B
Wait Wait

Run

B

Run

A

Run

A

Run

B

Run

B

Run

C

Run

C

(a) Uniprogramming

Time

(b) Multiprogramming with two programs

Time

(c) Multiprogramming with three programs

Program A

Program A

Program B

Run Wait WaitRun

Run WaitWait WaitRun

Program A

Program B

Wait WaitCombined

Run WaitWait WaitRunProgram C

Combined

Figure 2.5 Multiprogramming Example

Multiprogramming
Example

 JOB1 JOB2 JOB3

Type of job Heavy compute Heavy I/O Heavy I/O

Duration 5 min 15 min 10 min

Memory required 50 M 100 M 75 M

Need disk? No No Yes

Need terminal? No Yes No

Need printer? No No Yes

Table 2.1 Sample Program Execution Attributes

0%

0 5 10 15 20 25 30
minutes

time

(a) Uniprogramming

JOB1 JOB2 JOB3
Job History

Printer

Terminal

Disk

Memory

CPU

100%

0%

100%

0%

100%

0%

100%

0%

100%

0%

0 5 10 15

minutes

(b) Multiprogramming

Figure 2.6 Utilization Histograms

JOB1

JOB2

JOB3

Job History

Printer

Terminal

Disk

Memory

CPU

100%

0%

100%

0%

100%

0%

100%

0%

100%

time

Effects on Resource
Utilization

 Uniprogramming Multiprogramming

Processor use 20% 40%

Memory use 33% 67%

Disk use 33% 67%

Printer use 33% 67%

Elapsed time 30 min 15 min

Throughput 6 jobs/hr 12 jobs/hr

Mean response time 18 min 10 min

Table 2.2 Effects of Multiprogramming on Resource Utilization

Time-Sharing Systems

 Can be used to handle multiple interactive jobs

 Processor time is shared among multiple users

 Multiple users simultaneously access the

system through terminals, with the OS

interleaving the execution of each user

program in a short burst or quantum of

computation

Batch Multiprogramming

vs. Time Sharing

 Batch Multiprogramming Time Sharing

Principal objective Maximize processor use Minimize response time

Source of directives to

operating system

Job control language

commands provided with the

job

Commands entered at the

terminal

Compatible Time-Sharing
Systems

CTSS

 One of the first time-sharing
operating systems

 Developed at MIT by a group
known as Project MAC

 Ran on a computer with 32,000
36-bit words of main memory,
with the resident monitor
consuming 5000 of that

 To simplify both the monitor and
memory management a program
was always loaded to start at the
location of the 5000th word

Time Slicing

 System clock generates interrupts at
a rate of approximately one every
0.2 seconds

 At each interrupt OS regained
control and could assign processor to
another user

 At regular time intervals the current
user would be preempted and
another user loaded in

 Old user programs and data were
written out to disk

 Old user program code and data
were restored in main memory when
that program was next given a turn

Major Achievements

 Operating Systems are among the most

complex pieces of software ever developed

Major advances in
development include:

• processes

• memory management

• information protection and security

• scheduling and resource
management

• system structure

Process

 Fundamental to the structure of operating systems

A process can be defined as:

a program in execution

an instance of a running program

the entity that can be assigned to, and executed on, a processor

a unit of activity characterized by a single sequential thread of execution, a
current state, and an associated set of system resources

Development of the
Process

 Three major lines of computer system development created

problems in timing and synchronization that contributed to

the development:

• processor is switched among the various programs residing in main
memory

multiprogramming batch operation

• be responsive to the individual user but be able to support many users
simultaneously

time sharing

• a number of users are entering queries or updates against a database

real-time transaction systems

Causes of Errors

 Nondeterminate
program operation
 program execution is

interleaved by the processor
when memory is shared

 the order in which programs
are scheduled may affect their
outcome

 Deadlocks

 it is possible for two or more

programs to be hung up

waiting for each other

 may depend on the chance

timing of resource allocation

and release

 Improper
synchronization

 a program must wait until the
data are available in a buffer

 improper design of the
signaling mechanism can
result in loss or duplication

 Failed mutual exclusion
 more than one user or

program attempts to make
use of a shared resource at
the same time

 only one routine at a time
allowed to perform an
update against the file

Components of
a Process

The execution context is
essential:
 it is the internal data by

which the OS is able to
supervise and control the
process

 includes the contents of the
various process registers

 includes information such
as the priority of the process
and whether the process is
waiting for the completion
of a particular I/O event

 A process contains

three components:

 an executable program

 the associated data

needed by the program

(variables, work space,

buffers, etc.)

 the execution context

(or “process state”) of

the program

Memory Management

 The OS has five principal storage

management responsibilities:

process
isolation

automatic
allocation

and
management

support of
modular

programming

protection
and access

control

long-term
storage

Virtual Memory

 A facility that allows programs to address

memory from a logical point of view, without

regard to the amount of main memory

physically available

 Conceived to meet the requirement of having

multiple user jobs reside in main memory

concurrently

Paging

 Allows processes to be comprised of a number of fixed-

size blocks, called pages

 Program references a word by means of a virtual address

 consists of a page number and an offset within the page

 each page may be located anywhere in main memory

 Provides for a dynamic mapping between the virtual

address used in the program and a real (or physical)

address in main memory

Processor
Virtual

Address

Figure 2.10 Virtual Memory Addressing

Real

Address

Disk

Address

Memory

Management

Unit
Main

Memory

Secondary

Memory

Information Protection
and Security

 The nature of the

threat that concerns

an organization will

vary greatly

depending on the

circumstances

 The problem involves

controlling access to

computer systems

and the information

stored in them

Main
issues availability

confidentiality

data
integrity

authenticity

Scheduling and
Resource Management

 Key responsibility of

an OS is managing

resources

 Resource allocation

policies must

consider:

fairness

differential
responsiveness

efficiency

Different Architectural
Approaches

Demands on operating systems require new

ways of organizing the OS

• microkernel architecture

• multithreading

• symmetric multiprocessing

• distributed operating systems

• object-oriented design

Different approaches and design elements have been tried:

Microkernel Architecture

 Assigns only a few essential functions to the
kernel:

 The approach:

address
spaces

interprocess
communication

(IPC)

basic
scheduling

simplifies
implementation

provides
flexibility

is well suited to a
distributed

environment

Multithreading

 Technique in which a process, executing an application, is
divided into threads that can run concurrently

Thread

• dispatchable unit of work

• includes a processor context and its own data area to enable
subroutine branching

• executes sequentially and is interruptible

Process

• a collection of one or more threads and associated system resources

• programmer has greater control over the modularity of the application
and the timing of application related events

Symmetric
Multiprocessing (SMP)

 Term that refers to a computer hardware architecture and also

to the OS behavior that exploits that architecture

 Several processes can run in parallel

 Multiple processors are transparent to the user

 these processors share same main memory and I/O

facilities

 all processors can perform the same functions

 The OS takes care of scheduling of threads or processes on

individual processors and of synchronization among

processors

SMP Advantages

Performance
more than one process can be

running simultaneously, each on a
different processor

Availability
failure of a single process does not

halt the system

Incremental
Growth

performance of a system can be
enhanced by adding an

additional processor

Scaling
vendors can offer a range of products

based on the number of processors
configured in the system

OS Design

Distributed Operating
System

 Provides the illusion of

 a single main memory space

 single secondary memory
space

 unified access facilities

 State of the art for distributed
operating systems lags that of
uniprocessor and SMP operating
systems

Object-Oriented
Design

 Used for adding modular

extensions to a small kernel

 Enables programmers to

customize an operating system

without disrupting system

integrity

 Eases the development of

distributed tools and full-blown

distributed operating systems

Fault Tolerance

 Refers to the ability of a system or component to continue

normal operation despite the presence of hardware or software

faults

 Typically involves some degree of redundancy

 Intended to increase the reliability of a system

 typically comes with a cost in financial terms or

performance

 The extent adoption of fault tolerance measures must be

determined by how critical the resource is

Fundamental Concepts

 The basic measures are:

 Reliability

 R(t)

 defined as the probability of its correct operation up to time t given

that the system was operating correctly at time t=o

 Mean time to failure (MTTF)

 mean time to repair (MTTR) is the average time it takes to repair or

replace a faulty element

 Availability

 defined as the fraction of time the system is available to service

users’ requests

Fault Categories

 Permanent

 a fault that, after it occurs,

is always present

 the fault persists until the

faulty component is

replaced or repaired

 Temporary

 a fault that is not present

all the time for all

operating conditions

 can be classified as

 Transient – a fault that

occurs only once

 Intermittent – a fault

that occurs at multiple,

unpredictable times

Spatial (physical) redundancy

involves the use of multiple components that either perform the same
function simultaneously or are configured so that one component is
available as a backup in case of the failure of another component

Temporal redundancy

involves repeating a function or operation when an error is detected

effective with temporary faults but not useful for permanent faults

Information redundancy

provides fault tolerance by replicating or coding data in such a way that
bit errors can be both detected and corrected

Operating System
Mechanisms

 A number of techniques can be incorporated into OS

software to support fault tolerance:

 process isolation

 concurrency

 virtual machines

 checkpoints and rollbacks

Symmetric Multiprocessor
OS Considerations

 A multiprocessor OS must provide all the functionality of a multiprogramming

system plus additional features to accommodate multiple processors

 Key design issues:

Simultaneous
concurrent

processes or
threads

kernel routines
need to be

reentrant to
allow several
processors to
execute the
same kernel

code
simultaneously

Scheduling

any
processor

may perform
scheduling,

which
complicates
the task of
enforcing a
scheduling

policy

Synchronization

with multiple
active processes
having potential
access to shared
address spaces
or shared I/O
resources, care

must be taken to
provide effective
synchronization

Memory
management

the reuse of
physical

pages is the
biggest

problem of
concern

Reliability
and fault
tolerance

the OS
should
provide
graceful

degradation
in the face of

processor
failure

Multicore OS
Considerations

 The design challenge for a

many-core multicore system is

to efficiently harness the

multicore processing power

and intelligently manage the

substantial on-chip resources

efficiently

 Potential for parallelism exists

at three levels:

hardware parallelism within
each core processor, known as

instruction level parallelism

potential for multiprogramming
and multithreaded execution

within each processor

potential for a single application
to execute in concurrent

processes or threads across
multiple cores

