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External devices that engage in I/O with computer 

systems can be grouped into three categories:

• suitable for communicating with the computer user

• printers, terminals, video display, keyboard, mouse

Human readable

• suitable for communicating with electronic equipment

• disk drives, USB keys, sensors, controllers

Machine readable

• suitable for communicating with remote devices

• modems, digital line drivers

Communication



 Devices differ in a number of  areas:

Data Rate

• there may be differences of  magnitude between the data transfer rates

Application

• the use to which a device is put has an influence on the software

Complexity of  Control

• the effect on the operating system is filtered by the complexity of  the I/O module that controls the device

Unit of  Transfer
• data may be transferred as a stream of  bytes or characters or in larger blocks

Data Representation

• different data encoding schemes are used by different devices

Error Conditions

• the nature of  errors, the way in which they are reported, their consequences, and 
the available range of  responses differs from one device to another
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Figure 11.1  Typical I/O Device Data Rates



 Three techniques for performing I/O are:

 Programmed I/O

 the processor issues an I/O command on behalf  of  a process to an I/O module; 
that process then busy waits for the operation to be completed before proceeding

 Interrupt-driven I/O

 the processor issues an I/O command on behalf  of  a process

 if  non-blocking – processor continues to execute instructions from the process 
that issued the I/O command

 if  blocking – the next instruction the processor executes is from the OS, which 
will put the current process in a blocked state and schedule another process

 Direct Memory Access (DMA)

 a DMA module controls the exchange of  data between main memory and an 
I/O module



 No Interrupts Use of Interrupts 

I/O-to-memory transfer 
through processor 

Programmed I/O Interrupt-driven I/O 

Direct I/O-to-memory 

transfer 

 Direct memory access (DMA) 

 



1
• Processor directly controls a peripheral device

2
• A controller or I/O module is added

3
• Same configuration as step 2, but now interrupts are employed

4
• The I/O module is given direct control of  memory via DMA

5

• The I/O module is enhanced to become a separate processor, with 
a specialized instruction set tailored for I/O

6

• The I/O module has a local memory of  its own and is, in fact, a 
computer in its own right 
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(b) Single-bus, Integrated DMA-I/O
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Figure 11.3  Alternative DMA Configurations
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Efficiency

 Major effort in I/O design

 Important because I/O 

operations often form a 

bottleneck

 Most I/O devices are extremely 

slow compared with main 

memory and the processor

 The area that has received the 

most attention is disk I/O

Generality

 Desirable to handle all devices in 

a uniform manner

 Applies to the way processes view 

I/O devices and the way the 

operating system manages I/O 

devices and operations

 Diversity of  devices makes it 

difficult to achieve true generality

 Use a hierarchical, modular 

approach to the design of  the I/O 

function



 Functions of  the operating system should be separated according to 

their complexity, their characteristic time scale, and their level of  

abstraction

 Leads to an organization of  the operating system into a series of  

layers

 Each layer performs a related subset of  the functions required of  the 

operating system

 Layers should be defined so that changes in one layer do not require 

changes in other layers



 Perform input transfers in advance of  requests being made and perform 

output transfers some time after the request is made

Block-oriented device

• stores information in 
blocks that are usually of  
fixed size

• transfers are made one 
block at a time

• possible to reference data 
by its block number

• disks and USB keys are 
examples

Stream-oriented device

• transfers data in and out 
as a stream of  bytes

• no block structure

• terminals, printers, 
communications ports, 
and most other devices 
that are not secondary 
storage are examples



No Buffer
 Without a buffer, the OS 

directly accesses the device 

when it needs



Single Buffer  Operating system assigns a 

buffer in main memory for 

an I/O request



 Input transfers are made to the system buffer

 Reading ahead/anticipated input

 is done in the expectation that the block will eventually be needed

 when the transfer is complete, the process moves the block into user 

space and immediately requests another block

 Generally provides a speedup compared to the lack of  system buffering

 Disadvantages:

 complicates the logic in the operating system

 swapping logic is also affected



 Line-at-a-time operation

 appropriate for scroll-mode 

terminals (dumb terminals)

 user input is one line at a 

time with a carriage return 

signaling the end of  a line

 output to the terminal is 

similarly one line at a time

 Byte-at-a-time operation

 used on forms-mode 

terminals

 when each keystroke is 

significant 

 other peripherals such 

as sensors and 

controllers



Double Buffer

 Use two system buffers instead 

of  one

 A process can transfer data to or 

from one buffer while the 

operating system empties or fills 

the other buffer

 Also known as buffer swapping



Circular Buffer

 Two or more buffers are used

 Each individual buffer is one 

unit in a circular buffer

 Used when I/O operation must 

keep up with process



 Technique that smoothes out peaks in I/O demand

 with enough demand eventually all buffers become full and their advantage 

is lost

 When there is a variety of  I/O and process activities to service, 

buffering can increase the efficiency of  the OS and the performance of  

individual processes



Disk 
Performance 
Parameters

 The actual details of  disk I/O 

operation depend on the:

 computer system

 operating system

 nature of  the I/O 

channel and disk 

controller hardware

Wait for

Device

Wait for

Channel

Seek Rotational

Delay

Data

Transfer

Device Busy

Figure 11.6  Timing of a Disk I/O Transfer



 When the disk drive is operating, the disk is rotating at constant speed

 To read or write the head must be positioned at the desired track and 
at the beginning of  the desired sector on that track

 Track selection involves moving the head in a movable-head system or 
electronically selecting one head on a fixed-head system

 On a movable-head system the time it takes to position the head at the 
track is known as seek time

 The time it takes for the beginning of  the sector to reach the head is 
known as rotational delay

 The sum of  the seek time and the rotational delay equals the access 
time



Name Description Remarks 

Selection according to requestor 

 Random Random scheduling For analysis and simulation 

 FIFO First in first out Fairest of them all 

 PRI Priority by process Control outside of disk queue 

management 

 LIFO Last in first out Maximize locality and 

resource utilization 

Selection according to requested item 

 SSTF Shortest service time first High utilization, small queues 

 SCAN Back and forth over disk Better service distribution 

 C-SCAN One way with fast return Lower service variability 

 N-step-SCAN SCAN of N records at a time Service guarantee 

 FSCAN N-step-SCAN with N = queue 

size at beginning of SCAN 
cycle 

Load sensitive 

 
Disk Scheduling Algorithms



(a) FIFO 

(starting at track 100) 

(b) SSTF 

(starting at track 100) 

(c) SCAN 

(starting at track 100, 

in the direction of 

increasing track 
number) 

(d) C-SCAN 

(starting at track 100, 

in the direction of 

increasing track 
number) 

Next 

track 

accessed 

Number 

of tracks 

traversed 

Next 

track 

accessed 

Number 

of tracks 

traversed 

Next 

track 

accessed 

Number 

of tracks 

traversed 

Next 

track 

accessed 

Number 

of tracks 

traversed 

55 45 90 10 150 50 150 50 

58 3 58 32 160 10 160 10 

39 19 55 3 184 24 184 24 
18 21 39 16 90 94 18 166 

90 72 38 1 58 32 38 20 

160 70 18 20 55 3 39 1 

150 10 150 132 39 16 55 16 

38 112 160 10 38 1 58 3 

184 146 184 24 18 20 90 32 

Average 

seek 

length 

55.3 Average 

seek 

length 

27.5 Average 

seek 

length 

27.8 Average 

seek 

length 

35.8 

 
Table 11.2   Comparison of Disk Scheduling Algorithms



 Processes in sequential order

 Fair to all processes

 Approximates random scheduling in performance 

if  there are many processes competing for the disk
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Shortest Service

Time First 

(SSTF)

 Select the disk I/O request 

that requires the least 

movement of  the disk arm 

from its current position

 Always choose the 

minimum seek time

199

175

150

125

100

75

tr
a

ck
 n

u
m

b
er

tr
a

ck
 n

u
m

b
e
r

tr
a
ck

 n
u

m
b

er
tr

a
ck

 n
u

m
b

er

50

25

0

(a) FIFO Time

Time

Time

Time

199

175

150

125

100

75

50

25

0

(b) SSTF

199

175

150

125

100

75

50

25

0

(c) SCAN

199

175

150

125

100

75

50

25

0

Figure 11.7   Comparison of Disk Scheduling Algorithms (see Table 11.3)

(d) C-SCAN



SCAN

 Also known as the elevator algorithm

 Arm moves in one direction only

 satisfies all outstanding requests until it 
reaches the last track in that direction 
then the direction is reversed

 Favors jobs whose requests are for tracks 
nearest to both innermost and outermost 
tracks
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C-SCAN
(Circular SCAN)

 Restricts scanning to one 

direction only

 When the last track has been 

visited in one direction, the arm 

is returned to the opposite end of  

the disk and the scan begins 

again
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 Control of  the scheduling is outside the control of  disk management 

software

 Goal is not to optimize disk utilization but to meet other objectives

 Short batch jobs and interactive jobs are given higher priority

 Provides good interactive response time

 Longer jobs may have to wait an excessively long time

 A poor policy for database systems



 Segments the disk request queue into subqueues of  length N

 Subqueues are processed one at a time, using SCAN

 While a queue is being processed new requests must be added to 

some other queue

 If  fewer than N requests are available at the end of  a scan, all of  

them are processed with the next scan



 Uses two subqueues

 When a scan begins, all of  the requests are in one of  the queues, 

with the other empty

 During scan, all new requests are put into the other queue

 Service of  new requests is deferred until all of  the old requests have 

been processed



 Redundant Array 

of  Independent 

Disks

 Consists of  seven 

levels, zero through 

six

Design 
architectures 
share three 

characteristics:

RAID is a set of  
physical disk drives 

viewed by the operating 
system as a single logical 

drive

data are distributed 
across the physical 

drives of  an array in 
a scheme known as 

striping

redundant disk capacity is 
used to store parity 
information, which 

guarantees data 
recoverability in case of  a 

disk failure



 The term was originally coined in a paper by a group of  researchers at the 

University of  California at Berkeley

 the paper outlined various configurations and applications and 

introduced the definitions of  the RAID levels

 Strategy employs multiple disk drives and distributes data in such a way as 

to enable simultaneous access to data from multiple drives

 improves I/O performance and allows easier incremental increases in 

capacity

 The unique contribution is to address effectively the need for redundancy

 Makes use of  stored parity information that enables the recovery of  data 

lost due to a disk failure



Category Level Description 
Disks 

required 
Data availability 

Large I/O data 

transfer capacity 
Small I/O request rate 

Striping 0 Nonredundant N 
Lower than single 

disk 
Very high 

Very high for both read 

and write 

Mirroring 1 Mirrored 2N 

Higher than RAID 

2, 3, 4, or 5; lower 

than RAID 6 

Higher than single 

disk for read; 

similar to single 

disk for write 

Up to twice that of a 

single disk for read; 

similar to single disk 

for write 

2 
Redundant via 

Hamming code 
N + m 

Much higher than 

single disk; 

comparable to 

RAID 3, 4, or 5 

Highest of all 

listed alternatives 

Approximately twice 

that of a single disk 

Parallel 

access 

3 Bit-interleaved parity N + 1 

Much higher than 

single disk; 

comparable to 

RAID 2, 4, or 5 

Highest of all 

listed alternatives 

Approximately twice 

that of a single disk 

4 
Block-interleaved 

parity 
N + 1 

Much higher than 

single disk; 

comparable to 

RAID 2, 3, or 5 

Similar to RAID 0 

for read; 

significantly lower 

than single disk 

for write 

Similar to RAID 0 for 

read; significantly 

lower than single disk 

for write 

5 
Block-interleaved 

distributed parity 
N + 1 

Much higher than 

single disk; 

comparable to 

RAID 2, 3, or 4 

Similar to RAID 0 

for read; lower 

than single disk 

for write 

Similar to RAID 0 for 

read; generally lower 

than single disk for 

write 

Independent 

access 

6 
Block-interleaved dual 

distributed parity 
N + 2 

Highest of all 

listed alternatives 

Similar to RAID 0 

for read; lower 

than RAID 5 for 

write 

Similar to RAID 0 for 

read; significantly 

lower than RAID 5 for 

write 

 

RAID LevelsN = number of  data disks;    m proportional to log N



RAID 
Level 0

 Not a true RAID because it does not 

include redundancy to improve 

performance or provide data protection

 User and system data are distributed 

across all of  the disks in the array

 Logical disk is divided into strips

strip 12
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Figure 11.8    RAID Levels (page 1 of 2)



RAID 
Level 1

 Redundancy is achieved by the simple 

expedient of  duplicating all the data

 There is no “write penalty”

 When a drive fails the data may still be 

accessed from the second drive

 Principal disadvantage is the cost
strip 12
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RAID 
Level 2

 Makes use of  a parallel access 

technique

 Data striping is used

 Typically a Hamming code is used

 Effective choice in an environment in 

which many disk errors occur
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RAID 
Level 3

 Requires only a single redundant disk, 

no matter how large the disk array

 Employs parallel access, with data 

distributed in small strips

 Can achieve very high data transfer 

rates

block 12

(e) RAID 4 (block-level parity)
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RAID 
Level 4

 Makes use of  an independent access 

technique

 A bit-by-bit parity strip is calculated across 

corresponding strips on each data disk, 

and the parity bits are stored in the 

corresponding strip on the parity disk

 Involves a write penalty when an I/O write 

request of  small size is performed
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RAID 
Level 5

 Similar to RAID-4 but distributes the 

parity bits across all disks

 Typical allocation is a round-robin 

scheme

 Has the characteristic that the loss of  

any one disk does not result in data loss
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RAID 
Level 6

 Two different parity calculations are 

carried out and stored in separate blocks 

on different disks

 Provides extremely high data availability

 Incurs a substantial write penalty 

because each write affects two parity 

blocks
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 Cache memory is used to apply to a memory that is smaller and faster than 

main memory and that is interposed between main memory and the 

processor

 Reduces average memory access time by exploiting the principle of  locality

 Disk cache is a buffer in main memory for disk sectors

 Contains a copy of  some of  the sectors on the disk

when an I/O request is 
made for a particular sector, 

a check is made to 
determine if  the sector is in 

the disk cache

if  YES
the request is satisfied 

via the cache

if  NO
the requested sector 
is read into the disk 
cache from the disk



 Most commonly used algorithm that deals with the design issue of  

replacement strategy

 The block that has been in the cache the longest with no reference 

to it is replaced

 A stack of  pointers reference the cache

 most recently referenced block is on the top of  the stack

 when a block is referenced or brought into the cache, it is placed on the 

top of  the stack



 The block that has experienced the fewest references is replaced

 A counter is associated with each block

 Counter is incremented each time block is accessed

 When replacement is required, the block with the smallest count is 

selected


