
IT 540 Operating Systems
ECE519 Advanced Operating

Systems

Prof. Dr. Hasan Hüseyin BALIK

(11th Week)

11. I/O Management

and Disk Scheduling

(Advanced)

Operating

Systems

11. Outline

• I/O Devices

• Organization of the I/O Function

• Operating System Design Issues

• I/O Buffering

• Disk Scheduling

• RAID

• Disk Cache

External devices that engage in I/O with computer

systems can be grouped into three categories:

• suitable for communicating with the computer user

• printers, terminals, video display, keyboard, mouse

Human readable

• suitable for communicating with electronic equipment

• disk drives, USB keys, sensors, controllers

Machine readable

• suitable for communicating with remote devices

• modems, digital line drivers

Communication

 Devices differ in a number of areas:

Data Rate

• there may be differences of magnitude between the data transfer rates

Application

• the use to which a device is put has an influence on the software

Complexity of Control

• the effect on the operating system is filtered by the complexity of the I/O module that controls the device

Unit of Transfer
• data may be transferred as a stream of bytes or characters or in larger blocks

Data Representation

• different data encoding schemes are used by different devices

Error Conditions

• the nature of errors, the way in which they are reported, their consequences, and
the available range of responses differs from one device to another

Keyboard

101 102 103 104 105

Data Rate (bps)

106 107 108 109

Mouse

Modem

Ethernet

Hard disk

Graphics display

Gigabit Ethernet

Floppy disk

Laser printer

Scanner

Optical disk

Figure 11.1 Typical I/O Device Data Rates

 Three techniques for performing I/O are:

 Programmed I/O

 the processor issues an I/O command on behalf of a process to an I/O module;
that process then busy waits for the operation to be completed before proceeding

 Interrupt-driven I/O

 the processor issues an I/O command on behalf of a process

 if non-blocking – processor continues to execute instructions from the process
that issued the I/O command

 if blocking – the next instruction the processor executes is from the OS, which
will put the current process in a blocked state and schedule another process

 Direct Memory Access (DMA)

 a DMA module controls the exchange of data between main memory and an
I/O module

 No Interrupts Use of Interrupts

I/O-to-memory transfer
through processor

Programmed I/O Interrupt-driven I/O

Direct I/O-to-memory

transfer

 Direct memory access (DMA)

1
• Processor directly controls a peripheral device

2
• A controller or I/O module is added

3
• Same configuration as step 2, but now interrupts are employed

4
• The I/O module is given direct control of memory via DMA

5

• The I/O module is enhanced to become a separate processor, with
a specialized instruction set tailored for I/O

6

• The I/O module has a local memory of its own and is, in fact, a
computer in its own right

Address

Register

Control

Logic

Data

Register

Figure 11.2 Typical DMA Block Diagram

Data

Count

Data Lines

Address Lines

Request to DMA

Acknowledge from DMA

 Interrupt

Read

Write

Processor DMA

(a) Single-bus, detached DMA

(b) Single-bus, Integrated DMA-I/O

(c) I/O bus

Figure 11.3 Alternative DMA Configurations

I/O bus

System bus

I/O I/O Memory

Processor DMA Memory

I/O I/O I/O

Processor DMA DMA

I/O

I/O I/O

Memory

Efficiency

 Major effort in I/O design

 Important because I/O

operations often form a

bottleneck

 Most I/O devices are extremely

slow compared with main

memory and the processor

 The area that has received the

most attention is disk I/O

Generality

 Desirable to handle all devices in

a uniform manner

 Applies to the way processes view

I/O devices and the way the

operating system manages I/O

devices and operations

 Diversity of devices makes it

difficult to achieve true generality

 Use a hierarchical, modular

approach to the design of the I/O

function

 Functions of the operating system should be separated according to

their complexity, their characteristic time scale, and their level of

abstraction

 Leads to an organization of the operating system into a series of

layers

 Each layer performs a related subset of the functions required of the

operating system

 Layers should be defined so that changes in one layer do not require

changes in other layers

 Perform input transfers in advance of requests being made and perform

output transfers some time after the request is made

Block-oriented device

• stores information in
blocks that are usually of
fixed size

• transfers are made one
block at a time

• possible to reference data
by its block number

• disks and USB keys are
examples

Stream-oriented device

• transfers data in and out
as a stream of bytes

• no block structure

• terminals, printers,
communications ports,
and most other devices
that are not secondary
storage are examples

No Buffer
 Without a buffer, the OS

directly accesses the device

when it needs

Single Buffer Operating system assigns a

buffer in main memory for

an I/O request

 Input transfers are made to the system buffer

 Reading ahead/anticipated input

 is done in the expectation that the block will eventually be needed

 when the transfer is complete, the process moves the block into user

space and immediately requests another block

 Generally provides a speedup compared to the lack of system buffering

 Disadvantages:

 complicates the logic in the operating system

 swapping logic is also affected

 Line-at-a-time operation

 appropriate for scroll-mode

terminals (dumb terminals)

 user input is one line at a

time with a carriage return

signaling the end of a line

 output to the terminal is

similarly one line at a time

 Byte-at-a-time operation

 used on forms-mode

terminals

 when each keystroke is

significant

 other peripherals such

as sensors and

controllers

Double Buffer

 Use two system buffers instead

of one

 A process can transfer data to or

from one buffer while the

operating system empties or fills

the other buffer

 Also known as buffer swapping

Circular Buffer

 Two or more buffers are used

 Each individual buffer is one

unit in a circular buffer

 Used when I/O operation must

keep up with process

 Technique that smoothes out peaks in I/O demand

 with enough demand eventually all buffers become full and their advantage

is lost

 When there is a variety of I/O and process activities to service,

buffering can increase the efficiency of the OS and the performance of

individual processes

Disk
Performance
Parameters

 The actual details of disk I/O

operation depend on the:

 computer system

 operating system

 nature of the I/O

channel and disk

controller hardware

Wait for

Device

Wait for

Channel

Seek Rotational

Delay

Data

Transfer

Device Busy

Figure 11.6 Timing of a Disk I/O Transfer

 When the disk drive is operating, the disk is rotating at constant speed

 To read or write the head must be positioned at the desired track and
at the beginning of the desired sector on that track

 Track selection involves moving the head in a movable-head system or
electronically selecting one head on a fixed-head system

 On a movable-head system the time it takes to position the head at the
track is known as seek time

 The time it takes for the beginning of the sector to reach the head is
known as rotational delay

 The sum of the seek time and the rotational delay equals the access
time

Name Description Remarks

Selection according to requestor

 Random Random scheduling For analysis and simulation

 FIFO First in first out Fairest of them all

 PRI Priority by process Control outside of disk queue

management

 LIFO Last in first out Maximize locality and

resource utilization

Selection according to requested item

 SSTF Shortest service time first High utilization, small queues

 SCAN Back and forth over disk Better service distribution

 C-SCAN One way with fast return Lower service variability

 N-step-SCAN SCAN of N records at a time Service guarantee

 FSCAN N-step-SCAN with N = queue

size at beginning of SCAN
cycle

Load sensitive

Disk Scheduling Algorithms

(a) FIFO

(starting at track 100)

(b) SSTF

(starting at track 100)

(c) SCAN

(starting at track 100,

in the direction of

increasing track
number)

(d) C-SCAN

(starting at track 100,

in the direction of

increasing track
number)

Next

track

accessed

Number

of tracks

traversed

Next

track

accessed

Number

of tracks

traversed

Next

track

accessed

Number

of tracks

traversed

Next

track

accessed

Number

of tracks

traversed

55 45 90 10 150 50 150 50

58 3 58 32 160 10 160 10

39 19 55 3 184 24 184 24
18 21 39 16 90 94 18 166

90 72 38 1 58 32 38 20

160 70 18 20 55 3 39 1

150 10 150 132 39 16 55 16

38 112 160 10 38 1 58 3

184 146 184 24 18 20 90 32

Average

seek

length

55.3 Average

seek

length

27.5 Average

seek

length

27.8 Average

seek

length

35.8

Table 11.2 Comparison of Disk Scheduling Algorithms

 Processes in sequential order

 Fair to all processes

 Approximates random scheduling in performance

if there are many processes competing for the disk

First-In, First-Out (FIFO)

199

175

150

125

100

75

tr
a

ck
 n

u
m

b
er

tr
a

ck
 n

u
m

b
e
r

tr
a
ck

 n
u

m
b

er
tr

a
ck

 n
u

m
b

er

50

25

0

(a) FIFO Time

Time

Time

Time

199

175

150

125

100

75

50

25

0

(b) SSTF

199

175

150

125

100

75

50

25

0

(c) SCAN

199

175

150

125

100

75

50

25

0

Figure 11.7 Comparison of Disk Scheduling Algorithms (see Table 11.3)

(d) C-SCAN

Shortest Service

Time First

(SSTF)

 Select the disk I/O request

that requires the least

movement of the disk arm

from its current position

 Always choose the

minimum seek time

199

175

150

125

100

75

tr
a

ck
 n

u
m

b
er

tr
a

ck
 n

u
m

b
e
r

tr
a
ck

 n
u

m
b

er
tr

a
ck

 n
u

m
b

er

50

25

0

(a) FIFO Time

Time

Time

Time

199

175

150

125

100

75

50

25

0

(b) SSTF

199

175

150

125

100

75

50

25

0

(c) SCAN

199

175

150

125

100

75

50

25

0

Figure 11.7 Comparison of Disk Scheduling Algorithms (see Table 11.3)

(d) C-SCAN

SCAN

 Also known as the elevator algorithm

 Arm moves in one direction only

 satisfies all outstanding requests until it
reaches the last track in that direction
then the direction is reversed

 Favors jobs whose requests are for tracks
nearest to both innermost and outermost
tracks

199

175

150

125

100

75

tr
a

ck
 n

u
m

b
er

tr
a

ck
 n

u
m

b
e
r

tr
a

ck
 n

u
m

b
er

tr
a

ck
 n

u
m

b
er

50

25

0

(a) FIFO Time

Time

Time

Time

199

175

150

125

100

75

50

25

0

(b) SSTF

199

175

150

125

100

75

50

25

0

(c) SCAN

199

175

150

125

100

75

50

25

0

Figure 11.7 Comparison of Disk Scheduling Algorithms (see Table 11.3)

(d) C-SCAN

C-SCAN
(Circular SCAN)

 Restricts scanning to one

direction only

 When the last track has been

visited in one direction, the arm

is returned to the opposite end of

the disk and the scan begins

again

199

175

150

125

100

75

tr
a

ck
 n

u
m

b
er

tr
a

ck
 n

u
m

b
e
r

tr
a

ck
 n

u
m

b
er

tr
a
ck

 n
u

m
b

er

50

25

0

(a) FIFO Time

Time

Time

Time

199

175

150

125

100

75

50

25

0

(b) SSTF

199

175

150

125

100

75

50

25

0

(c) SCAN

199

175

150

125

100

75

50

25

0

Figure 11.7 Comparison of Disk Scheduling Algorithms (see Table 11.3)

(d) C-SCAN

 Control of the scheduling is outside the control of disk management

software

 Goal is not to optimize disk utilization but to meet other objectives

 Short batch jobs and interactive jobs are given higher priority

 Provides good interactive response time

 Longer jobs may have to wait an excessively long time

 A poor policy for database systems

 Segments the disk request queue into subqueues of length N

 Subqueues are processed one at a time, using SCAN

 While a queue is being processed new requests must be added to

some other queue

 If fewer than N requests are available at the end of a scan, all of

them are processed with the next scan

 Uses two subqueues

 When a scan begins, all of the requests are in one of the queues,

with the other empty

 During scan, all new requests are put into the other queue

 Service of new requests is deferred until all of the old requests have

been processed

 Redundant Array

of Independent

Disks

 Consists of seven

levels, zero through

six

Design
architectures
share three

characteristics:

RAID is a set of
physical disk drives

viewed by the operating
system as a single logical

drive

data are distributed
across the physical

drives of an array in
a scheme known as

striping

redundant disk capacity is
used to store parity
information, which

guarantees data
recoverability in case of a

disk failure

 The term was originally coined in a paper by a group of researchers at the

University of California at Berkeley

 the paper outlined various configurations and applications and

introduced the definitions of the RAID levels

 Strategy employs multiple disk drives and distributes data in such a way as

to enable simultaneous access to data from multiple drives

 improves I/O performance and allows easier incremental increases in

capacity

 The unique contribution is to address effectively the need for redundancy

 Makes use of stored parity information that enables the recovery of data

lost due to a disk failure

Category Level Description
Disks

required
Data availability

Large I/O data

transfer capacity
Small I/O request rate

Striping 0 Nonredundant N
Lower than single

disk
Very high

Very high for both read

and write

Mirroring 1 Mirrored 2N

Higher than RAID

2, 3, 4, or 5; lower

than RAID 6

Higher than single

disk for read;

similar to single

disk for write

Up to twice that of a

single disk for read;

similar to single disk

for write

2
Redundant via

Hamming code
N + m

Much higher than

single disk;

comparable to

RAID 3, 4, or 5

Highest of all

listed alternatives

Approximately twice

that of a single disk

Parallel

access

3 Bit-interleaved parity N + 1

Much higher than

single disk;

comparable to

RAID 2, 4, or 5

Highest of all

listed alternatives

Approximately twice

that of a single disk

4
Block-interleaved

parity
N + 1

Much higher than

single disk;

comparable to

RAID 2, 3, or 5

Similar to RAID 0

for read;

significantly lower

than single disk

for write

Similar to RAID 0 for

read; significantly

lower than single disk

for write

5
Block-interleaved

distributed parity
N + 1

Much higher than

single disk;

comparable to

RAID 2, 3, or 4

Similar to RAID 0

for read; lower

than single disk

for write

Similar to RAID 0 for

read; generally lower

than single disk for

write

Independent

access

6
Block-interleaved dual

distributed parity
N + 2

Highest of all

listed alternatives

Similar to RAID 0

for read; lower

than RAID 5 for

write

Similar to RAID 0 for

read; significantly

lower than RAID 5 for

write

RAID LevelsN = number of data disks; m proportional to log N

RAID
Level 0

 Not a true RAID because it does not

include redundancy to improve

performance or provide data protection

 User and system data are distributed

across all of the disks in the array

 Logical disk is divided into strips

strip 12

(a) RAID 0 (non-redundant)

strip 8

strip 4

strip 0

strip 13

strip 9

strip 5

strip 1

strip 14

strip 10

strip 6

strip 2

strip 15

strip 11

strip 7

strip 3

strip 12

(b) RAID 1 (mirrored)

strip 8

strip 4

strip 0

strip 13

strip 9

strip 5

strip 1

strip 14

strip 10

strip 6

strip 2

strip 15

strip 11

strip 7

strip 3

strip 12

strip 8

strip 4

strip 0

strip 13

strip 9

strip 5

strip 1

strip 14

strip 10

strip 6

strip 2

(c) RAID 2 (redundancy through Hamming code)

b0 b1 b2 b3 f0(b) f1(b) f2(b)

strip 15

strip 11

strip 7

strip 3

Figure 11.8 RAID Levels (page 1 of 2)

RAID
Level 1

 Redundancy is achieved by the simple

expedient of duplicating all the data

 There is no “write penalty”

 When a drive fails the data may still be

accessed from the second drive

 Principal disadvantage is the cost
strip 12

(a) RAID 0 (non-redundant)

strip 8

strip 4

strip 0

strip 13

strip 9

strip 5

strip 1

strip 14

strip 10

strip 6

strip 2

strip 15

strip 11

strip 7

strip 3

strip 12

(b) RAID 1 (mirrored)

strip 8

strip 4

strip 0

strip 13

strip 9

strip 5

strip 1

strip 14

strip 10

strip 6

strip 2

strip 15

strip 11

strip 7

strip 3

strip 12

strip 8

strip 4

strip 0

strip 13

strip 9

strip 5

strip 1

strip 14

strip 10

strip 6

strip 2

(c) RAID 2 (redundancy through Hamming code)

b0 b1 b2 b3 f0(b) f1(b) f2(b)

strip 15

strip 11

strip 7

strip 3

Figure 11.8 RAID Levels (page 1 of 2)

RAID
Level 2

 Makes use of a parallel access

technique

 Data striping is used

 Typically a Hamming code is used

 Effective choice in an environment in

which many disk errors occur

strip 12

(a) RAID 0 (non-redundant)

strip 8

strip 4

strip 0

strip 13

strip 9

strip 5

strip 1

strip 14

strip 10

strip 6

strip 2

strip 15

strip 11

strip 7

strip 3

strip 12

(b) RAID 1 (mirrored)

strip 8

strip 4

strip 0

strip 13

strip 9

strip 5

strip 1

strip 14

strip 10

strip 6

strip 2

strip 15

strip 11

strip 7

strip 3

strip 12

strip 8

strip 4

strip 0

strip 13

strip 9

strip 5

strip 1

strip 14

strip 10

strip 6

strip 2

(c) RAID 2 (redundancy through Hamming code)

b0 b1 b2 b3 f0(b) f1(b) f2(b)

strip 15

strip 11

strip 7

strip 3

Figure 11.8 RAID Levels (page 1 of 2)

RAID
Level 3

 Requires only a single redundant disk,

no matter how large the disk array

 Employs parallel access, with data

distributed in small strips

 Can achieve very high data transfer

rates

block 12

(e) RAID 4 (block-level parity)

block 8

block 4

block 0

block 13

block 9

block 5

block 1

block 14

block 10

block 6

block 2

block 15

block 7

block 3

P(12-15)

P(8-11)

P(4-7)

P(0-3)

block 12

block 8

block 4

block 0

block 9

block 5

block 1

block 13

block 6

block 2

block 14

block 10

block 3

block 15

P(16-19)

P(12-15)

P(8-11)

P(4-7)

block 16 block 17 block 18 block 19

block 11

block 7

(f) RAID 5 (block-level distributed parity)

(d) RAID 3 (bit-interleaved parity)

b0 b1 b2 b3 P(b)

Figure 11.8 RAID Levels (page 2 of 2)

P(0-3)

block 11

block 12

(g) RAID 6 (dual redundancy)

block 8

block 4

block 0

P(12-15)

block 9

block 5

block 1

Q(12-15)

P(8-11)

block 6

block 2

block 13

P(4-7)

block 3

block 14

block 10

Q(4-7)

P(0-3)

Q(8-11)

block 15

block 7

Q(0-3)

block 11

RAID
Level 4

 Makes use of an independent access

technique

 A bit-by-bit parity strip is calculated across

corresponding strips on each data disk,

and the parity bits are stored in the

corresponding strip on the parity disk

 Involves a write penalty when an I/O write

request of small size is performed

block 12

(e) RAID 4 (block-level parity)

block 8

block 4

block 0

block 13

block 9

block 5

block 1

block 14

block 10

block 6

block 2

block 15

block 7

block 3

P(12-15)

P(8-11)

P(4-7)

P(0-3)

block 12

block 8

block 4

block 0

block 9

block 5

block 1

block 13

block 6

block 2

block 14

block 10

block 3

block 15

P(16-19)

P(12-15)

P(8-11)

P(4-7)

block 16 block 17 block 18 block 19

block 11

block 7

(f) RAID 5 (block-level distributed parity)

(d) RAID 3 (bit-interleaved parity)

b0 b1 b2 b3 P(b)

Figure 11.8 RAID Levels (page 2 of 2)

P(0-3)

block 11

block 12

(g) RAID 6 (dual redundancy)

block 8

block 4

block 0

P(12-15)

block 9

block 5

block 1

Q(12-15)

P(8-11)

block 6

block 2

block 13

P(4-7)

block 3

block 14

block 10

Q(4-7)

P(0-3)

Q(8-11)

block 15

block 7

Q(0-3)

block 11

RAID
Level 5

 Similar to RAID-4 but distributes the

parity bits across all disks

 Typical allocation is a round-robin

scheme

 Has the characteristic that the loss of

any one disk does not result in data loss

block 12

(e) RAID 4 (block-level parity)

block 8

block 4

block 0

block 13

block 9

block 5

block 1

block 14

block 10

block 6

block 2

block 15

block 7

block 3

P(12-15)

P(8-11)

P(4-7)

P(0-3)

block 12

block 8

block 4

block 0

block 9

block 5

block 1

block 13

block 6

block 2

block 14

block 10

block 3

block 15

P(16-19)

P(12-15)

P(8-11)

P(4-7)

block 16 block 17 block 18 block 19

block 11

block 7

(f) RAID 5 (block-level distributed parity)

(d) RAID 3 (bit-interleaved parity)

b0 b1 b2 b3 P(b)

Figure 11.8 RAID Levels (page 2 of 2)

P(0-3)

block 11

block 12

(g) RAID 6 (dual redundancy)

block 8

block 4

block 0

P(12-15)

block 9

block 5

block 1

Q(12-15)

P(8-11)

block 6

block 2

block 13

P(4-7)

block 3

block 14

block 10

Q(4-7)

P(0-3)

Q(8-11)

block 15

block 7

Q(0-3)

block 11

RAID
Level 6

 Two different parity calculations are

carried out and stored in separate blocks

on different disks

 Provides extremely high data availability

 Incurs a substantial write penalty

because each write affects two parity

blocks

block 12

(e) RAID 4 (block-level parity)

block 8

block 4

block 0

block 13

block 9

block 5

block 1

block 14

block 10

block 6

block 2

block 15

block 7

block 3

P(12-15)

P(8-11)

P(4-7)

P(0-3)

block 12

block 8

block 4

block 0

block 9

block 5

block 1

block 13

block 6

block 2

block 14

block 10

block 3

block 15

P(16-19)

P(12-15)

P(8-11)

P(4-7)

block 16 block 17 block 18 block 19

block 11

block 7

(f) RAID 5 (block-level distributed parity)

(d) RAID 3 (bit-interleaved parity)

b0 b1 b2 b3 P(b)

Figure 11.8 RAID Levels (page 2 of 2)

P(0-3)

block 11

block 12

(g) RAID 6 (dual redundancy)

block 8

block 4

block 0

P(12-15)

block 9

block 5

block 1

Q(12-15)

P(8-11)

block 6

block 2

block 13

P(4-7)

block 3

block 14

block 10

Q(4-7)

P(0-3)

Q(8-11)

block 15

block 7

Q(0-3)

block 11

 Cache memory is used to apply to a memory that is smaller and faster than

main memory and that is interposed between main memory and the

processor

 Reduces average memory access time by exploiting the principle of locality

 Disk cache is a buffer in main memory for disk sectors

 Contains a copy of some of the sectors on the disk

when an I/O request is
made for a particular sector,

a check is made to
determine if the sector is in

the disk cache

if YES
the request is satisfied

via the cache

if NO
the requested sector
is read into the disk
cache from the disk

 Most commonly used algorithm that deals with the design issue of

replacement strategy

 The block that has been in the cache the longest with no reference

to it is replaced

 A stack of pointers reference the cache

 most recently referenced block is on the top of the stack

 when a block is referenced or brought into the cache, it is placed on the

top of the stack

 The block that has experienced the fewest references is replaced

 A counter is associated with each block

 Counter is incremented each time block is accessed

 When replacement is required, the block with the smallest count is

selected

