
Operating Systems and

Computer Hardware

Prof. Dr. Hasan Hüseyin BALIK

(4th Week)

Copyright © 2018 Pearson Education, Ltd. All Rights Reserved.

4. Operating System Overview

Outline

◼ Operating System Objectives and Functions

◼ The Evolution of Operating Systems

◼ Major Achievements

◼ Developments Leading to Modern Operating Systems

◼ Fault Tolerance

◼ Os Design Considerations for Multiprocessor and Multicore,

◼ Microsoft Windows Overview

◼ Traditional Unix Systems

◼ Modern Unix Systems

◼ Linux

◼ Android

Operating System

◼ A program that controls the execution of

application programs

◼ An interface between applications and hardware

Main objectives of an OS:

• Convenience

• Efficiency

• Ability to evolve

I /O devices

and

networking

System interconnect

(bus)

Software

Application

programming interface

Instruction Set

Architecture

Hardware

Main

memory

Memory

translation

Execution hardware

Figure 2.1 Computer Hardware and Software Structure

Application programs

Application

binary interface

Operating system

Libraries/utilities

Operating System Services

◼ Program development

◼ Program execution

◼ Access I/O devices

◼ Controlled access to files

◼ System access

◼ Error detection and response

◼ Accounting

Key Interfaces

◼ Instruction set architecture (ISA)

◼Application binary interface (ABI)

◼Application programming interface (API)

The Operating System as
Resource Manager

◼The OS is responsible for controlling

the use of a computer’s resources,

such as I/O, main and secondary

memory, and processor execution

time

Operating System
as Resource Manager

◼Functions in the same way as ordinary

computer software

◼Program, or suite of programs, executed

by the processor

◼Frequently relinquishes control and must

depend on the processor to allow it to

regain control

Memory

Computer System
I/O Devices

Operating

System

Software

Programs

and Data

Processor Processor

OS

Programs

Data

Storage

I /O Controller

I /O Controller

Printers,

keyboards,

digital camera,

etc.

I /O Controller

Figure 2.2 The Operating System as Resource Manager

Evolution of Operating Systems

▪A major OS will evolve over time for a

number of reasons:

Hardware upgrades

New types of hardware

New services

Fixes

Evolution of

Operating Systems

▪ Stages include:

Serial
Processing

Simple Batch
Systems

Multiprogrammed
Batch Systems

Time
Sharing
Systems

Serial Processing

Earliest Computers:

◼ No operating system

◼ Programmers interacted
directly with the computer
hardware

◼ Computers ran from a console
with display lights, toggle
switches, some form of input
device, and a printer

◼ Users have access to the
computer in “series”

Problems:

◼ Scheduling:

◼ Most installations used a

hardcopy sign-up sheet to

reserve computer time

◼ Time allocations could

run short or long,

resulting in wasted

computer time

◼ Setup time

◼ A considerable amount of

time was spent on setting up

the program to run

Simple Batch Systems

◼ Early computers were very expensive

◼ Important to maximize processor utilization

◼ Monitor

◼ User no longer has direct access to processor

◼ Job is submitted to computer operator who batches

them together and places them on an input device

◼ Program branches back to the monitor when finished

Monitor Point of View

◼ Monitor controls the sequence

of events

◼ Resident Monitor is software

always in memory

◼ Monitor reads in job and gives

control

◼ Job returns control to monitor

Interrupt

Processing

Device

Drivers

Job

Sequencing

Control Language

Interpreter

User

Program

Area

Monitor

Boundary

Figure 2.3 Memory Layout for a Resident Monitor

Processor Point of View

◼ Processor executes instruction from the memory

containing the monitor

◼ Executes the instructions in the user program until it

encounters an ending or error condition

◼ “Control is passed to a job” means processor is fetching

and executing instructions in a user program

◼ “Control is returned to the monitor” means that the

processor is fetching and executing instructions from the

monitor program

Job Control Language
(JCL)

Special type of programming
language used to provide

instructions to the monitor

What compiler to use

What data to use

Desirable Hardware
Features

• While the user program is executing, it must not alter the memory area
containing the monitor

Memory protection

• Prevents a job from monopolizing the system

Timer

• Can only be executed by the monitor

Privileged instructions

• Gives OS more flexibility in controlling user programs

Interrupts

Modes of Operation

User Mode

• User program executes in
user mode

• Certain areas of memory are
protected from user access

• Certain instructions may not
be executed

Kernel Mode

• Monitor executes in kernel
mode

• Privileged instructions may
be executed

• Protected areas of memory
may be accessed

Simple Batch System
Overhead

◼ Processor time alternates between execution of user

programs and execution of the monitor

◼ Sacrifices:

◼ Some main memory is now given over to the monitor

◼ Some processor time is consumed by the monitor

◼ Despite overhead, the simple batch system improves

utilization of the computer

Multiprogrammed
Batch Systems

Processor is often
idle

Even with
automatic

job
sequencing

I/O devices
are slow

compared
to processor

Read one record from file 15 µs

Execute 100 instructions 1 µs

Write one record to file 15 µs
TOTAL 31 µs

Percent CPU Utilization

=
1

31
= 0.032 = 3.2%

Figure 2.4 System Utilization Example

Uniprogramming

The processor spends a certain amount of time executing, until

it reaches an I/O instruction; it must then wait until that I/O

instruction concludes before proceeding

Run Wait WaitRun

Time

Run Wait WaitRun

Run

A

Run

A

Run WaitWait WaitRun

Run

B
Wait Wait

Run

B

Run

A

Run

A

Run

B

Run

B

Run

C

Run

C

(a) Uniprogramming

Time

(b) Multiprogramming with two programs

Time

(c) Multiprogramming with three programs

Program A

Program A

Program B

Run Wait WaitRun

Run WaitWait WaitRun

Program A

Program B

Wait WaitCombined

Run WaitWait WaitRunProgram C

Combined

Figure 2.5 Multiprogramming Example

Multiprogramming

◼ There must be enough memory to hold the OS (resident monitor) and one user

program

◼ When one job needs to wait for I/O, the processor can switch to the other job, which is

likely not waiting for I/O

Run Wait WaitRun

Time

Run Wait WaitRun

Run

A

Run

A

Run WaitWait WaitRun

Run

B
Wait Wait

Run

B

Run

A

Run

A

Run

B

Run

B

Run

C

Run

C

(a) Uniprogramming

Time

(b) Multiprogramming with two programs

Time

(c) Multiprogramming with three programs

Program A

Program A

Program B

Run Wait WaitRun

Run WaitWait WaitRun

Program A

Program B

Wait WaitCombined

Run WaitWait WaitRunProgram C

Combined

Figure 2.5 Multiprogramming Example

Multiprogramming

◼ Also known as multitasking

◼ Memory is expanded to hold three, four, or more programs and switch

among all of them

Run Wait WaitRun

Time

Run Wait WaitRun

Run

A

Run

A

Run WaitWait WaitRun

Run

B
Wait Wait

Run

B

Run

A

Run

A

Run

B

Run

B

Run

C

Run

C

(a) Uniprogramming

Time

(b) Multiprogramming with two programs

Time

(c) Multiprogramming with three programs

Program A

Program A

Program B

Run Wait WaitRun

Run WaitWait WaitRun

Program A

Program B

Wait WaitCombined

Run WaitWait WaitRunProgram C

Combined

Figure 2.5 Multiprogramming Example

Multiprogramming
Example

 JOB1 JOB2 JOB3

Type of job Heavy compute Heavy I/O Heavy I/O

Duration 5 min 15 min 10 min

Memory required 50 M 100 M 75 M

Need disk? No No Yes

Need terminal? No Yes No

Need printer? No No Yes

Table 2.1 Sample Program Execution Attributes

 Uniprogramming Multiprogramming

Processor use 20% 40%

Memory use 33% 67%

Disk use 33% 67%

Printer use 33% 67%

Elapsed time 30 min 15 min

Throughput 6 jobs/hr 12 jobs/hr

Mean response time 18 min 10 min

Table 2.2 Effects of Multiprogramming on Resource Utilization

0%

0 5 10 15 20 25 30
minutes

time

(a) Uniprogramming

JOB1 JOB2 JOB3
Job History

Printer

Terminal

Disk

Memory

CPU

100%

0%

100%

0%

100%

0%

100%

0%

100%

0%

0 5 10 15
minutes

(b) Multiprogramming

Figure 2.6 Utilization Histograms

JOB1

JOB2

JOB3

Job History

Printer

Terminal

Disk

Memory

CPU

100%

0%

100%

0%

100%

0%

100%

0%

100%

time

Time-Sharing Systems

◼ Can be used to handle multiple interactive jobs

◼ Processor time is shared among multiple users

◼ Multiple users simultaneously access the

system through terminals, with the OS

interleaving the execution of each user

program in a short burst or quantum of

computation

 Batch Multiprogramming Time Sharing

Principal objective Maximize processor use Minimize response time

Source of directives to

operating system

Job control language

commands provided with the

job

Commands entered at the

terminal

Table 2.3 Batch Multiprogramming versus Time Sharing

Compatible Time-Sharing
System (CTSS)

◼ One of the first time-sharing operating systems

◼ Developed at MIT by a group known as Project MAC

◼ The system was first developed for the IBM 709 in 1961

◼ Ran on a computer with 32,000 36-bit words of main memory, with the resident

monitor consuming 5000 of that

◼ Utilized a technique known as time slicing

◼ System clock generated interrupts at a rate of approximately one every 0.2 seconds

◼ At each clock interrupt the OS regained control and could assign the processor to another user

◼ Thus, at regular time intervals the current user would be preempted and another user loaded in

◼ To preserve the old user program status for later resumption, the old user programs and data were

written out to disk before the new user programs and data were read in

◼ Old user program code and data were restored in main memory when that program was next

given a turn

Monitor

Free
Free Free

JOB 1

0

32000

5000

20000

20000

(a)

Monitor

JOB 2

0

32000

5000

25000 25000

(b)

Free

Monitor

JOB 2

0

32000

5000

25000

(f)

Monitor

JOB 3

(JOB 2)

0

32000

5000

10000

(c)

Free
25000

Monitor

JOB 1

(JOB 2)

0

32000

5000

(d)

20000

15000

Free
25000

Monitor

JOB 4

(JOB 2)

(JOB 1)

0

32000

5000

(e)

Figure 2.7 CTSS Operation

Major Achievements

◼ Operating Systems are among the most

complex pieces of software ever developed

◼ Major advances in development include:

◼ Processes

◼ Memory management

◼ Information protection and security

◼ Scheduling and resource management

◼ System structure

Process

◼ Fundamental to the structure of operating systems

A process can be defined as:

A program in execution

An instance of a running program

The entity that can be assigned to, and executed on, a processor

A unit of activity characterized by a single sequential thread of execution, a
current state, and an associated set of system resources

Causes of Errors

◼ Nondeterminate program
operation
◼ When programs share memory,

and their execution is
interleaved by the processor,
they may interfere with each
other by overwriting common
memory areas in unpredictable
ways

◼ The order in which programs
are scheduled may affect the
outcome of any particular
program

◼ Deadlocks
◼ It is possible for two or more

programs to be hung up
waiting for each other

◼ Improper synchronization

◼ It is often the case that a
routine must be suspended
awaiting an event elsewhere in
the system

◼ Improper design of the
signaling mechanism can result
in loss or duplication

◼ Failed mutual exclusion
◼ More than one user or program

attempts to make use of a shared
resource at the same time

◼ There must be some sort of
mutual exclusion mechanism that
permits only one routine at a time
to perform an update against the
file

Components of
a Process

◼The execution context is
essential:
◼ It is the internal data by

which the OS is able to
supervise and control the
process

◼ Includes the contents of the
various process registers

◼ Includes information such
as the priority of the process
and whether the process is
waiting for the completion
of a particular I/O event

◼ A process contains

three components:

◼ An executable program

◼ The associated data

needed by the program

(variables, work space,

buffers, etc.)

◼ The execution context

(or “process state”) of

the program

Process

Management

▪ The entire state of the

process at any instant is

contained in its context

▪ New features can be

designed and incorporated

into the OS by expanding

the context to include any

new information needed to

support the feature

Figure 2.8 Typical Process Implementation

Context

Data

Program
(code)

Context

Data

i

Process index

PC

Base
Limit

Other

registers

i

b
h

j

b

h
Process

B

Process

A

Main

Memory

Processor

Registers

Process

list

Program
(code)

Memory Management

◼ The OS has five principal storage

management responsibilities:

Process
isolation

Automatic
allocation

and
management

Support of
modular

programming

Protection
and access

control

Long-term
storage

Virtual Memory

◼ A facility that allows programs to address

memory from a logical point of view, without

regard to the amount of main memory

physically available

◼ Conceived to meet the requirement of having

multiple user jobs reside in main memory

concurrently

Paging

◼ Allows processes to be comprised of a number of fixed-

size blocks, called pages

◼ Program references a word by means of a virtual address,
consisting of a page number and an offset within the page

◼ Each page of a process may be located anywhere in main

memory

◼ The paging system provides for a dynamic mapping

between the virtual address used in the program and a

real address (or physical address) in main memory

Figure 2.9 Virtual Memory Concepts

Main Memory Disk

User

program

A

0

A.0

B.0 B.1

B.5 B.6

B.2 B.3

A.1

A.2

A.7

A.8

A.5

A.9

1

2

3

4

5

6

7

8

9

10

User

program

B

0

1

2

3

4

5

6

Main memory consists of a

number of fixed-length frames,

each equal to the size of a page.

For a program to execute, some

or all of its pages must be in

main memory.

Secondary memory (disk) can

hold many fixed-length pages. A

user program consists of some

number of pages. Pages for all

programs plus the operating system

are on disk, as are files.

Processor
Virtual

Address

Figure 2.10 Virtual Memory Addressing

Real

Address

Disk

Address

Memory

Management

Unit
Main

Memory

Secondary

Memory

Information Protection
and Security

◼ The nature of the

threat that concerns

an organization will

vary greatly

depending on the

circumstances

◼ The problem involves

controlling access to

computer systems

and the information

stored in them

Main
issues Availability

Confidentiality

Data
integrity

Authenticity

Scheduling and
Resource Management

◼ Key responsibility of

an OS is managing

resources

◼ Resource allocation

policies must

consider:

Fairness

Differential
responsiveness

Efficiency

Service

Call

Handler (code)

Service Call

from Process

Interrupt

from Process

Pass Control

to Process

Interrupt

from I /O

Interrupt

Handler (code)

Short-Term

Scheduler

(code)

Long-

Term

Queue

Short-

Term

Queue

I /O

Queues

Operating System

Figure 2.11 Key Elements of an Operating System for Multiprogramming

Different Architectural
Approaches

◼Demands on operating systems require new

ways of organizing the OS

• Microkernel architecture

• Multithreading

• Symmetric multiprocessing

• Distributed operating systems

• Object-oriented design

Different approaches and design elements have been tried:

Microkernel Architecture

◼ Assigns only a few essential functions to the
kernel:

◼ The approach:

Address
space

management

Interprocess
communication

(IPC)

Basic
scheduling

Simplifies
implementation

Provides
flexibility

Well suited to a
distributed

environment

Multithreading

◼ Technique in
which a process,
executing an
application, is
divided into
threads that can
run concurrently

Thread

Dispatchable unit of work

Includes a processor context
and its own data area for a

stack

Executes sequentially and is
interruptible

Process

A collection of one or more
threads and associated

system resources

By breaking a single
application into multiple

threads, a programmer has
greater control over the

modularity of the
application and the timing

of application-related events

Symmetric
Multiprocessing (SMP)

◼ Term that refers to a computer hardware architecture and also

to the OS behavior that exploits that architecture

◼ The OS of an SMP schedules processes or threads across all

of the processors

◼ The OS must provide tools and functions to exploit the

parallelism in an SMP system

◼ Multithreading and SMP are often discussed together, but the

two are independent facilities

◼ An attractive feature of an SMP is that the existence of

multiple processors is transparent to the user

SMP Advantages

Performance
More than one process can be

running simultaneously, each on a
different processor

Availability
Failure of a single process does not

halt the system

Incremental
Growth

Performance of a system can be
enhanced by adding an

additional processor

Scaling
Vendors can offer a range of products

based on the number of processors
configured in the system

Process 1

Figure 2.12 Multiprogramming and Multiprocessing

Process 2

Process 3

(a) Interleaving (multiprogramming, one processor)

Process 1

Process 2

Process 3

(b) Interleaving and overlapping (multiprocessing; two processors)

Blocked Running

Time

OS Design

Distributed Operating

System

◼ Provides the illusion of a single

main memory space and a single

secondary memory space plus

other unified access facilities, such

as a distributed file system

◼ State of the art for distributed

operating systems lags that of

uniprocessor and SMP operating

systems

Object-Oriented

Design

◼ Lends discipline to the process
of adding modular extensions to
a small kernel

◼ Enables programmers to
customize an operating system
without disrupting system
integrity

◼ Also eases the development of
distributed tools and full-blown
distributed operating systems

Fault Tolerance

◼ Refers to the ability of a system or component to continue

normal operation despite the presence of hardware or software

faults

◼ Typically involves some degree of redundancy

◼ Intended to increase the reliability of a system

◼ Typically comes with a cost in financial terms or performance

◼ The extent adoption of fault tolerance measures must be

determined by how critical the resource is

Fundamental Concepts

◼ The basic measures are:

◼ Reliability

◼ R(t)

◼ Defined as the probability of its correct operation up to time t given that the

system was operating correctly at time t=o

◼ Mean time to failure (MTTF)

◼ Mean time to repair (MTTR) is the average time it takes to repair or replace

a faulty element

◼ Availability

◼ Defined as the fraction of time the system is available to service users’

requests

Class Availability Annual Downtime

Continuous 1.0 0

Fault Tolerant 0.99999 5 minutes

Fault Resilient 0.9999 53 minutes

High Availability 0.999 8.3 hours

Normal Availability 0.99 - 0.995 44-87 hours

Table 2.4 Availability Classes

Faults

◼ Are defined by the IEEE Standards Dictionary as an erroneous

hardware or software state resulting from:

◼ Component failure

◼ Operator error

◼ Physical interference from the environment

◼ Design error

◼ Program error

◼ Data structure error

◼ The standard also states that a fault manifests itself as:

◼ A defect in a hardware device or component

◼ An incorrect step, process, or data definition in a computer program

Fault Categories

◼ Permanent

• A fault that, after it occurs, is always present

• The fault persists until the faulty component is replaced or repaired

◼ Temporary

• A fault that is not present all the time for all operating conditions

• Can be classified as

◼ Transient – a fault that occurs only once

◼ Intermittent – a fault that occurs at multiple, unpredictable times

Methods of Redundancy

Spatial
(physical)

redundancy

Involves the use of
multiple components
that either perform
the same function

simultaneously or are
configured so that one

component is
available as a backup
in case of the failure

of another
component

Temporal
redundancy

Involves repeating a
function or operation

when an error is
detected

Is effective with
temporary faults but

not useful for
permanent faults

Information
redundancy

Provides fault
tolerance by

replicating or coding
data in such a way

that bit errors can be
both detected and

corrected

Operating System
Mechanisms

◼ A number of techniques can be incorporated

into OS software to support fault tolerance:

◼ Process isolation

◼ Concurrency controls

◼ Virtual machines

◼ Checkpoints and rollbacks

Symmetric Multiprocessor
OS Considerations

◼ A multiprocessor OS must provide all the functionality of a multiprogramming

system plus additional features to accommodate multiple processors

◼ Key design issues:

Simultaneous
concurrent

processes or
threads

Kernel
routines need
to be reentrant

to allow
several

processors to
execute the
same kernel

code
simultaneously

Scheduling

Any
processor

may perform
scheduling,

which
complicates
the task of
enforcing a
scheduling

policy

Synchronization

With multiple
active processes
having potential
access to shared

address spaces or
shared I/O

resources, care
must be taken to
provide effective
synchronization

Memory
management

The reuse
of

physical
pages is

the biggest
problem

of
concern

Reliability
and fault
tolerance

The OS
should
provide
graceful

degradation
in the face

of processor
failure

Multicore OS
Considerations

◼ The design challenge for a

many-core multicore system is

to efficiently harness the

multicore processing power

and intelligently manage the

substantial on-chip resources

efficiently

◼ Potential for parallelism exists

at three levels:

Hardware parallelism within
each core processor, known as

instruction level parallelism

Potential for multiprogramming
and multithreaded execution

within each processor

Potential for a single application
to execute in concurrent

processes or threads across
multiple cores

Grand Central Dispatch
(GCD)

◼ Is a multicore support capability
◼ Once a developer has identified something that can be split off

into a separate task, GCD makes it as easy and noninvasive as
possible to actually do so

◼ In essence, GCD is a thread pool mechanism, in which the OS
maps tasks onto threads representing an available degree of
concurrency

◼ Provides the extension to programming languages to allow
anonymous functions, called blocks, as a way of specifying
tasks

◼ Makes it easy to break off the entire unit of work while
maintaining the existing order and dependencies between
subtasks

Virtual Machine Approach

◼ Allows one or more cores to be dedicated to a

particular process and then leave the processor

alone to devote its efforts to that process

◼ Multicore OS could then act as a hypervisor that

makes a high-level decision to allocate cores to

applications but does little in the way of resource

allocation beyond that

User mode

Kernel mode

Figure 2.14 Windows Architecture

Session

manager

System

threads

System service dispatcher

Winlogon

Lsass

Lsass = local security authentication server

POSIX = portable operating system interface

GDI = graphics device interface

DLL = dynamic link libraries

Colored area indicates Executive

System support

processes

Service processes
Applications

Environment

subsystems

Service control

manager

Services.exe

Spooler

Winmgmt.exe

SVChost.exe

User

application

Subsytem DLLs Win32

Ntdll.dll

Windows

Explorer

Task manager

(Kernel-mode callable interfaces)
Win32 USER,

GDI

Graphics

drivers

Hardware abstraction layer (HAL)

F
ile sy

stem
 ca

ch
e

O
b
ject m

a
n
a
g
er

P
lu

g
 a

n
d
 p

la
y

m
a
n
a
g
er

P
o
w

er m
a
n
a
g
er

S
ecu

rity
 referen

ce

m
o
n
ito

r

V
irtu

a
l m

em
o
ry

P
ro

cesses a
n

d

th
rea

d
s

C
o
n

fig
u
ra

tio
n

m
a
n
a
g
er (reg

istry
)

L
o
ca

l p
ro

ced
u
re

ca
ll

POSIX

Device

and file

system

drivers

I /O manager

Kernel

Kernel-Mode Components
of Windows

◼ Executive

◼ Contains the core OS services, such as memory management, process and thread management,
security, I/O, and interprocess communication

◼ Kernel

◼ Controls execution of the processors. The Kernel manages thread scheduling, process switching,
exception and interrupt handling, and multiprocessor synchronization

◼ Hardware Abstraction Layer (HAL)

◼ Maps between generic hardware commands and responses and those unique to a specific
platform and isolates the OS from platform-specific hardware differences

◼ Device Drivers

◼ Dynamic libraries that extend the functionality of the Executive. These include hardware device
drivers that translate user I/O function calls into specific hardware device I/O requests and
software components for implementing file systems, network protocols, and any other system
extensions that need to run in kernel mode

◼ Windowing and Graphics System

◼ Implements the GUI functions, such as dealing with windows, user interface controls, and
drawing

Windows Executive

I/O manager

•Provides a
framework through
which I/O devices
are accessible to
applications, and is
responsible for
dispatching to the
appropriate device
drivers for further
processing

Cache manager

•Improves the
performance of file-
based I/O by causing
recently referenced
file data to reside in
main memory for
quick access, and by
deferring disk writes
by holding the
updates in memory
for a short time
before sending them
to the disk in more
efficient batches

Object manager

•Creates, manages,
and deletes Windows
Executive objects
that are used to
represent resources
such as processes,
threads, and
synchronization
objects and enforces
uniform rules for
retaining, naming,
and setting the
security of objects

Plug-and-play
manager

•Determines which
drivers are required
to support a
particular device and
loads those drivers

Power manager

•Coordinates power
management among
devices

Windows Executive

Security reference
monitor

•Enforces access-
validation and audit-
generation rules

Virtual memory
manager

•Manages virtual
addresses, physical
memory, and the
paging files on disk
and controls the
memory
management
hardware and data
structures which map
virtual addresses in
the process’s address
space to physical
pages in the
computer’s memory

Process/thread
manager

•Creates, manages,
and deletes process
and thread objects

Configuration
manager

•Responsible for
implementing and
managing the system
registry, which is the
repository for both
system-wide and per-
user settings of
various parameters

Advanced local
procedure call
(ALPC) facility

•Implements an
efficient cross-process
procedure call
mechanism for
communication
between local
processes
implementing
services and
subsystems

User-Mode Processes

◼ Windows supports four basic types of user-mode
processes:

• User-mode services needed to manage the system
Special System

Processes

• The printer spooler, event logger, and user-mode components that
cooperate with device drivers, and various network servicesService Processes

• Provide different OS personalities (environments)
Environment
Subsystems

• Executables (EXEs) and DLLs that provide the functionality users
run to make use of the systemUser Applications

Client/Server Model

◼ Windows OS services,
environmental subsystems,
and applications are all
structured using the
client/server model

◼ Common in distributed
systems, but can be used
internal to a single system

◼ Processes communicate
via RPC

◼ Advantages:

◼ It simplifies the
Executive

◼ It improves reliability

◼ It provides a uniform
means for applications to
communicate with
services via RPCs
without restricting
flexibility

◼ It provides a suitable base
for distributed computing

Threads and SMP

◼ Two important characteristics of Windows are its support for

threads and for symmetric multiprocessing (SMP)

◼ OS routines can run on any available processor, and different routines can

execute simultaneously on different processors

◼ Windows supports the use of multiple threads of execution within a single

process. Multiple threads within the same process may execute on different

processors simultaneously

◼ Server processes may use multiple threads to process requests from more

than one client simultaneously

◼ Windows provides mechanisms for sharing data and resources between

processes and flexible interprocess communication capabilities

Windows Objects

◼ Windows draws heavily on the concepts of object-

oriented design

◼ Key object-oriented concepts used by Windows

are:

Encapsulation

Object class and
instance

Inheritance

Polymorphism

Asynchronous Procedure Call Used to break into the execution of a specified thread and to

cause a procedure to be called in a specified processor mode.

Deferred Procedure Call Used to postpone interrupt processing to avoid delaying

hardware interrupts. Also used to implement timers and inter-

processor communication

Interrupt Used to connect an interrupt source to an interrupt service

routine by means of an entry in an Interrupt Dispatch Table

(IDT). Each processor has an IDT that is used to dispatch

interrupts that occur on that processor.

Process Represents the virtual address space and control information
necessary for the execution of a set of thread objects. A process

contains a pointer to an address map, a list of ready threads

containing thread objects, a list of threads belonging to the

process, the total accumulated time for all threads executing

within the process, and a base priority.

Thread Represents thread objects, including scheduling priority and
quantum, and which processors the thread may run on.

Profile Used to measure the distribution of run time within a block of

code. Both user and system code can be profiled.

Table 2.5 Windows Kernel Control Objects

Traditional UNIX Systems

◼ Developed at Bell Labs and became operational on a PDP-7 in 1970

◼ The first notable milestone was porting the UNIX system from the PDP-7 to the
PDP-11

◼ First showed that UNIX would be an OS for all computers

◼ Next milestone was rewriting UNIX in the programming language C

◼ Demonstrated the advantages of using a high-level language for system code

◼ Was described in a technical journal for the first time in 1974

◼ First widely available version outside Bell Labs was Version 6 in 1976

◼ Version 7, released in 1978, is the ancestor of most modern UNIX systems

◼ Most important of the non-AT&T systems was UNIX BSD (Berkeley Software
Distribution), running first on PDP and then on VAX computers

Hardware Level

Kernel Level

User Level

User Programs

Trap

Hardware Control

System Call Interface

Libraries

Device Drivers

File Subsystem
Process

Control

Subsystem

character block

Buffer Cache

Inter-process

communication

Scheduler

Memory

management

Figure 2.15 Traditional UNIX Kernel

Common

Facilities

virtual

memory

framework

block

device

switch

exec

switch

a.out

file mappings

disk driver

tape driver

network

driver

tty

driver

system

processes

time-sharing

processes

RFS

s5fs

FFS

NFS

device

mappings

anonymous

mappings

coff

elf

STREAMS

vnode/vfs

interface

scheduler

framework

Figure 2.17 Modern UNIX Kernel [VAHA96]Figure 2.16 Modern UNIX Kernel

System V Release 4
(SVR4)

◼ Developed jointly by AT&T and Sun Microsystems

◼ Combines features from SVR3, 4.3BSD, Microsoft Xenix System V, and

SunOS

◼ New features in the release include:

◼ Real-time processing support

◼ Process scheduling classes

◼ Dynamically allocated data structures

◼ Virtual memory management

◼ Virtual file system

◼ Preemptive kernel

BSD

◼ Berkeley Software Distribution

◼ 4.xBSD is widely used in academic installations and has served as the basis of a
number of commercial UNIX products

◼ 4.4BSD was the final version of BSD to be released by Berkeley

◼ There are several widely used, open-source versions of BSD

◼ FreeBSD

◼ Popular for Internet-based servers and firewalls

◼ Used in a number of embedded systems

◼ NetBSD

◼ Available for many platforms

◼ Often used in embedded systems

◼ OpenBSD

◼ An open-source OS that places special emphasis on security

Solaris 11

◼ Oracle’s SVR4-based UNIX release

◼ Provides all of the features of SVR4 plus a number of

more advanced features such as:

◼ A fully preemptable, multithreaded kernel

◼ Full support for SMP

◼ An object-oriented interface to file systems

LINUX Overview

◼ Started out as a UNIX variant for the IBM PC

◼ Linus Torvalds, a Finnish student of computer science, wrote the initial
version

◼ Linux was first posted on the Internet in 1991

◼ Today it is a full-featured UNIX system that runs on virtually all platforms

◼ Is free and the source code is available

◼ Key to the success of Linux has been the availability of free software
packages under the auspices of the Free Software Foundation (FSF)

◼ Highly modular and easily configured

Modular Structure

◼ Linux development is global and
done by a loosely associated
group of independent developers

◼ Although Linux does not use a
microkernel approach, it
achieves many of the potential
advantages of the approach by
means of its particular modular
architecture

◼ Linux is structured as a
collection of modules, a number
of which can be automatically
loaded and unloaded on demand

Loadable Modules

◼ Relatively independent blocks

◼ A module is an object file whose
code can be linked to and unlinked
from the kernel at runtime

◼ A module is executed in kernel
mode on behalf of the current
process

◼ Have two important
characteristics:

◼ Dynamic linking

◼ Stackable modules

Figure 2.18 Example List of Linux Kernel Modules

*syms

state

extable

num_exentries

num_syms

num_gpl_syms

srcversion

FAT

version

*name

*next

module

*syms

state

extable

num_exentries

num_syms

num_gpl_syms

srcversion

version

*name

*next

value

*name

value

kernel_symbol

*name

value

*name

value

*name

value

*name

value

*name

VFAT

module

symbol_table

signals system calls

processes

& scheduler

virtual

memory

physical

memory

system

memory

network inter-

face controller

interrupts

processes

Figure 2.19 Linux Kernel Components

h
a
rd

w
a
re

u
se

r
le

v
el

k
er

n
el

CPU terminal disk

traps &

faults

char device

drivers

block device

drivers

network de-

vice drivers

file

systems

network

protocols

SIGHUP

SIGQUIT

SIGTRAP

SIGBUS

SIGKILL

SIGSEGV

SIGPIPT

SIGTERM

SIGCHLD

Terminal hangup

Keyboard quit

Trace trap

Bus error

Kill signal

Segmentation violation

Broken pipe

Termination

Child status unchanged

SIGCONT

SIGTSTP

SIGTTOU

SIGXCPU

SIGVTALRM

SIGWINCH

SIGPWR

SIGRTMIN

SIGRTMAX

Continue

Keyboard stop

Terminal write

CPU limit exceeded

Virtual alarm clock

Window size unchanged

Power failure

First real-time signal

Last real-time signal

Table 2.6 Some Linux Signals

Linux Signals

Filesystem related

close Close a file descriptor.

link Make a new name for a file.

open Open and possibly create a file or device.

read Read from file descriptor.

write Write to file descriptor

Process related

execve Execute program.

exit Terminate the calling process.

getpid Get process identification.

setuid Set user identity of the current process.

ptrace Provides a means by which a parent process my observe and control

the execution of another process, and examine and change its core

image and registers.

Scheduling related

sched_getparam Sets the scheduling parameters associated with the scheduling policy

for the process identified by pid.

sched_get_priority_max Returns the maximum priority value that can be used with the

scheduling algorithm identified by policy.

sched_setscheduler Sets both the scheduling policy (e.g., FIFO) and the associated

parameters for the process pid.

sched_rr_get_interval Writes into the timespec structure pointed to by the parameter tp the
round robin time quantum for the process pid.

sched_yield A process can relinquish the processor voluntarily without blocking

via this system call. The process will then be moved to the end of the

queue for its static priority and a new process gets to run.

Table 2.7 Some Linux System Calls (page 1 of 2)

Table 2.7 Some Linux System Calls (page 2 of 2)

I nt er pr ocess Communi cat i on (I PC) r el at ed

msgr cv A message buffer structure is allocated to receive a

message. The system call then reads a message from the

message queue specified by msqid into the newly created

message buffer.

semct l Performs the control operation specified by cmd on the

semaphore set semid.

semop Performs operations on selected members of the semaphore

set semid.

shmat Attaches the shared memory segment identified by shmid

to the data segment of the calling process.

shmct l Allows the user to receive information on a shared

memory segment, set the owner, group, and permissions of

a shared memory segment, or destroy a segment.

Socket (net wor ki ng) r el at ed

bi nd Assigns the local IP address and port for a socket.
Returns 0 for success and –1 for error.

connect Establishes a connection between the given socket and

the remote socket associated with sockaddr.

get host name Returns local host name.

send Send the bytes contained in buffer pointed to by *msg

over the given socket.

set sockopt Sets the options on a socket

Mi scel l aneous

f sync Copies all in-core parts of a file to disk, and waits

until the device reports that all parts are on stable

storage.

t i me Returns the time in seconds since January 1, 1970.

vhangup Simulates a hangup on the current terminal. This call

arranges for other users to have a "clean" tty at login

time.

Android Operating
System

◼ A Linux-based system originally

designed for mobile phones

◼ The most popular mobile OS

◼ Development was done by

Android Inc., which was bought

by Google in 2005

◼ 1st commercial version (Android

1.0) was released in 2008

◼ Most recent version is Android

7.0 (Nougat)

◼ Android has an active

community of developers and

enthusiasts who use the Android

Open Source Project (AOSP)

source code to develop and

distribute their own modified

versions of the operating system

◼ The open-source nature of

Android has been the key to its

success

Application Framework
◼ Provides high-level building blocks accessible through standardized API’s

that programmers use to create new apps

◼ Architecture is designed to simplify the reuse of components

◼ Key components:

Activity
Manager

Manages lifecycle of
applications

Responsible for
starting, stopping,
and resuming the

various applications

Window
Manager

Java abstraction of
the underlying

Surface Manager

Allows applications
to declare their client
area and use features

like the status bar

Package
Manager

Installs and removes
applications

Telephony
Manager

Allows interaction
with phone, SMS,
and MMS services

Application Framework
(cont.)

Content
Providers

These
functions

encapsulate
application
data that

need to be
shared

between
applications

such as
contacts

Resource
Manager

Manages
application
resources,

such as
localized

strings and
bitmaps

View
System

Provides the
user interface

(UI)
primitives as
well as UI

Events

Location
Manager

Allows
developers to

tap into
location-

based
services,

whether by
GPS, cell

tower IDs, or
local Wi-Fi
databases

Notification
Manager

Manages
events, such
as arriving

messages and
appointments

XMPP

Provides
standardized

messaging
functions
between

applications

System Libraries

◼ Collection of useful system functions written in C or C++ and used by various
components of the Android system

◼ Called from the application framework and applications through a Java interface

◼ Exposed to developers through the Android application framework

◼ Some of the key system libraries include:

◼ Surface Manager

◼ OpenGL

◼ Media Framework

◼ SQL Database

◼ Browser Engine

◼ Bionic LibC

Android

Runtime

◼ Most Android software is mapped
into a bytecode format which is then
transformed into native instructions
on the device itself

◼ Earlier releases of Android used a
scheme known as Dalvik, however
Dalvik has a number of limitations
in terms of scaling up to larger
memories and multicore
architectures

◼ More recent releases of Android rely
on a scheme known as Android
runtime (ART)

◼ ART is fully compatible with
Dalvik’s existing bytecode format so
application developers do not need to
change their coding to be executable
under ART

◼ Each Android application runs in its
own process, with its own instance of
the Dalvik VM

Advantages and Disadvantages

of Using ART

Advantages

◼ Reduces startup time of
applications as native code is
directly executed

◼ Improves battery life because
processor usage for JIT is avoided

◼ Lesser RAM footprint is required
for the application to run as there
is no storage required for JIT
cache

◼ There are a number of Garbage
Collection optimizations and
debug enhancements that went
into ART

Disadvantages

◼ Because the conversion from
bytecode to native code is done at
install time, application
installation takes more time

◼ On the first fresh boot or first boot
after factory reset, all applications
installed on a device are compiled
to native code using dex2opt,
therefore the first boot can take
significantly longer to reach Home
Screen compared to Dalvik

◼ The native code thus generated is
stored on internal storage that
requires a significant amount of
additional internal storage space

Figure 2.22 Android System Architecture

Camera Driver Display Drivers
Audio Driver

(ALSA, OSS, etc) Other Drivers

Linux Kernel

Binder IPC

Android Runtime/Dalvik

Applications and Framework

Camera HAL Graphics HALAudio HAL
Other HALs

Activity

Manager

Window

Manager

Other Services

Power

Manager

Service

Camera

Service

MediaPlayer

Service

Other Media

Services

Hardware Abstraction Layer (HAL)

Android System Services

Media Server System Server

AudioFlinger

Activities

An activity is a single visual user interface
component, including things such as menu

selections, icons, and checkboxes

Every screen in an application is an extension
of the Activity class

Activities use Views to form graphical user
interfaces that display information and

respond to user actions

Power Management

Alarms

◼ Implemented in the Linux kernel
and is visible to the app developer
through the AlarmManager in the
RunTime core libraries

◼ Is implemented in the kernel so
that an alarm can trigger even if
the system is in sleep mode

◼ This allows the system to go
into sleep mode, saving
power, even though there is
a process that requires a
wake up

Wakelocks

◼ Prevents an Android system from
entering into sleep mode

◼ These locks are requested through
the API whenever an application
requires one of the managed
peripherals to remain powered on

◼ An application can hold one of
the following wakelocks:

◼ Full_Wake_Lock

◼ Partial_Wake_Lock

◼ Screen_Dim_Wake_Lock

◼ Screen_Bright_Wake_Lock

	Slide 1: Operating Systems and Computer Hardware
	Slide 2: 4. Operating System Overview
	Slide 3: Outline
	Slide 4: Operating System
	Slide 5
	Slide 6: Operating System Services
	Slide 7: Key Interfaces
	Slide 8: The Operating System as Resource Manager
	Slide 9: Operating System as Resource Manager
	Slide 10
	Slide 11: Evolution of Operating Systems
	Slide 12: Evolution of Operating Systems
	Slide 13: Serial Processing
	Slide 14: Simple Batch Systems
	Slide 15: Monitor Point of View
	Slide 16: Processor Point of View
	Slide 17: Job Control Language (JCL)
	Slide 18: Desirable Hardware Features
	Slide 19: Modes of Operation
	Slide 20: Simple Batch System Overhead
	Slide 21: Multiprogrammed Batch Systems
	Slide 22
	Slide 23: Uniprogramming
	Slide 24: Multiprogramming
	Slide 25: Multiprogramming
	Slide 26: Multiprogramming Example
	Slide 27
	Slide 28
	Slide 29: Time-Sharing Systems
	Slide 30
	Slide 31: Compatible Time-Sharing System (CTSS)
	Slide 32
	Slide 33: Major Achievements
	Slide 34: Process
	Slide 35: Causes of Errors
	Slide 36: Components of a Process
	Slide 37: Process Management
	Slide 38: Memory Management
	Slide 39: Virtual Memory
	Slide 40: Paging
	Slide 41
	Slide 42
	Slide 43: Information Protection and Security
	Slide 44: Scheduling and Resource Management
	Slide 45
	Slide 46: Different Architectural Approaches
	Slide 47: Microkernel Architecture
	Slide 48: Multithreading
	Slide 49: Symmetric Multiprocessing (SMP)
	Slide 50: SMP Advantages
	Slide 51
	Slide 52: OS Design
	Slide 53: Fault Tolerance
	Slide 54: Fundamental Concepts
	Slide 55
	Slide 56
	Slide 57: Faults
	Slide 58: Fault Categories
	Slide 59: Methods of Redundancy
	Slide 60: Operating System Mechanisms
	Slide 61: Symmetric Multiprocessor OS Considerations
	Slide 62: Multicore OS Considerations
	Slide 63: Grand Central Dispatch (GCD)
	Slide 64: Virtual Machine Approach
	Slide 65
	Slide 66: Kernel-Mode Components of Windows
	Slide 67: Windows Executive
	Slide 68: Windows Executive
	Slide 69: User-Mode Processes
	Slide 70: Client/Server Model
	Slide 71: Threads and SMP
	Slide 72: Windows Objects
	Slide 73
	Slide 74: Traditional UNIX Systems
	Slide 75
	Slide 76
	Slide 77
	Slide 78: System V Release 4 (SVR4)
	Slide 79: BSD
	Slide 80: Solaris 11
	Slide 81: LINUX Overview
	Slide 82: Modular Structure
	Slide 83
	Slide 84
	Slide 85: Linux Signals
	Slide 86
	Slide 87
	Slide 88: Android Operating System
	Slide 89
	Slide 90: Application Framework
	Slide 91: Application Framework (cont.)
	Slide 92: System Libraries
	Slide 93: Android Runtime
	Slide 94
	Slide 95: Advantages and Disadvantages of Using ART
	Slide 96
	Slide 97: Activities
	Slide 98: Power Management

