Operating Systems and
Computer Hardware

Prof. Dr. Hasan Hiiseyin BALIK
(374 Week)

2. Computer System Overview

- Outhne

m Basic Elements

m Evolution of the Microprocessor
m Instruction Execution

m Interrupts

m The Memory Hierarchy

m Cache Memory

m Direct Memory Access

m Multiprocessor and Multicore Organization

-~ Operating System

m Exploits the hardware resources of one or more
pProcessors

m Provides a set of services to system users

m Manages secondary memory and I/0O devices

. Basic Elements,

1/0
Processor Modules
Main S)]rgstem
Memory = J

. Processor

Controls the Performs the
operation of the data processing
computer functions

Referred to as
the Central
Processing Unit

©329)

mStores data and programs

m Typically volatile

m Contents of the memory 1s lost when
the computer 1s shut down

mReferred to as real memory or
primary memory

[/0O Modules

_

Move data
between the
computer and
1ts external
environment

~

4 N
Secondary
memory devices
(e.g. disks)

_ %
4 N
Communications
equipment
Terminals

” System Bus

mProvides for
communication among

Processors, main memory,
and I/0 modules

CPU

PC MAR
IR MBR
1/0 AR
Exeééion
__unit__/ 1/0 BR

1/0 Module

Buffers

System
Bus

<

>

Py
TRTENTERTENT

Figure 1.1 Computer Components

Main Memory

Instruction
Instruction
Instruction

e & o M- O

Data
Data
Data
Data

20
1 1

Program counter

Instruction register

Memory address register
Memory buffer register
Input/output address register
Input/output buffer register

: Top-Level View

=N

Microprocessor

m[nvention that brought about desktop
and handheld computing

m Contains a processor on a single chip
m Fastest general purpose processors
m Multiprocessors

mEach chip (socket) contains multiple
processors (cores)

Graphical Processing
Units (GPU’s)

m Provide efficient computation on arrays of
data using Single-Instruction Multiple Data
(SIMD) techniques pioneered in
supercomputers

m No longer used just for rendering advanced
graphics
m Also used for general numerical processing

m Physics simulations for games
m Computations on large spreadsheets

Digital Signal Processors
(DSPs)

m Deal with streaming signals such as audio or
video

m Used to be embedded 1in 1/0 devices like
modems

m Are now becoming first-class computational
devices, especially 1n handhelds

m Encoding/decoding speech and video
(codecs)

m Provide support for encryption and security

~ System on a Chip
- (So0)

m'To satisfy the requirements of handheld
devices, the classic microprocessor 1s
giving way to the SoC

m Other components of the system, such as DSPs,
GPUs, 1/0 devices (such as codecs and radios)
and main memory, in addition to the
CPUs and caches, are on the same chip

Instruction Execution

m A program consists of a set of instructions
stored 1n memory

Processor reads
Processor executes

each instruction

(fetches) 1nstructions
from memory

Two steps

Fetch Stage Execute Stage

(START '—‘

Fetch Next
Instruction

Execute
Instruction

Figure 1.2 Basic Instruction Cycle

 Instruction Fetch
- and Execute

m The processor fetches an instruction from
memory

m Typically the program counter (PC) holds the
address of the next instruction to be fetched

= PC 1s incremented after each fetch

Instruction Register (TR)

m Processor interprets the
instruction and performs
required action:

m Processor-memory
m Processor-1/0

m Data processing

Fetched instruction i1s

loaded into Instruction
Register (IR)

m Control

0 34 3
Opcode Address
(a) Instruction format
0 1 3
S Magnitude

(b) Integer format

Program counter (PC) = Address of instruction
Instruction register (IR) = Instruction being executed
Accumulator (AC) = Temporary storage

(c) Internal CPU registers
0001 = Load AC from memory
0010 = Store AC to memory

0101 = Add to AC from memory

(d) Partial list of opcodes

Figure 1.3 Characteristics of a Hypothetical Machine

Fetch Stage

Execute Stage

Memory CPU Registers Memory CPU Registers
300{1 940 3 0 0]PC 300{1 940 30 1|/PC
30159411 AC| 301(5 9 4 1 000 3]AC
302(2 9 4 1 19 40[IRJ302|12 9 41 19 4 0fIR
940[0 0 0 3 940[0 0 0 3

94110 0 0 2 94110 0 0 2

Step 1 Step 2

Memory CPU Registers Memory CPU Registers
300{1 940 30 1|/PC 300{1 940 30 2|/PC
301(5 9 41 0 00 3|]AC|301|5 9 4 1 0 005AC
3022941“5941|R 302(2 941 <5941)R
940[0 0 0 3 940[0 0 0 3] *3+2=5
94110 0 0 2 94110 0 0 2

Step 3 Step 4

Memory CPU Registers Memory CPU Registers
30011 940 30 2|/PC 30011 940 3 0 3|PC
30115 9 41 0 005/AC|301|5 9 41 0 00 5|AC
30212 9 41 »2 9 4 1|IR|302(2 9 41 29 41|IR
940[0 0 0 3 940[0 0 0 3

941(0 0 0 2 9410 0 0 5

Step 5 Step 6

Figure 1.4 Example of Program Execution
(contents of memory and registers in hexadecimal)

Interrupts

m Mechanism by which other modules may
interrupt the normal sequencing of the
ProCessor

m Provided to improve processor utilization
m Most I/0O devices are slower than the processor
m Processor must pause to wait for device
m Wasteful use of the processor

Program

Timer

I/0

Hardware
failure

Classes of Interrupts

Generated by some condition that occurs as a result of an
instruction execution, such as arithmetic overflow, division
by zero, attempt to execute an illegal machine instruction,
and reference outside a user's allowed memory space.

Generated by a timer within the processor. This allows the
operating system to perform certain functions on a regular
basis.

Generated by an I/0 controller, to signal normal
completion of an operation or to signal a variety of error
conditions.

Generated by a failure, such as power failure or memory
parity error.

User 1/0
Program Program
N £.% |

o | #Ai @

o® 0
o
® o
(4]
o
o
o
P
o

il
WRITE § i iCommand

Flow of Control N v'
Without T

Interrupts ®

1 v
WRITE

(@) No interrupts

Interrupt
Handler

D g £ W
S oooro 000000 sos sss oooo ooo
Oo .. OOOOOO 00.00 00 00 000 Oo
. [} Ceq, o, _ o o LI X
ooo oo ooooooov.tooo’so ooo
% oo & O”\OOOOOOOOOO 000
........... vO"A..........YQ w.....” ..O.. XYY XYY Y Y Y Y e eecceccccse

(b) Interrupts; short 1/0O wait

Short I/0 Wait

interrupt occurs during course of execution of

user program

K=

= 2 o5
of| @ |of 2| © |0
=g |= € S| | L
a 3 =T
e |
L gt A e
DA R S
IR)
X) R Po~ch

Y
Y

(c) Interrupts; long I/0 wait

Long I/0O Wait

User Program | nterrupt Handler
1
2
i
Interrupt —»
occurs here i+ 1 <
M

Figure1.6 Trander of Control via I nterrupts

Fetch Stage EXxecute Stage | nterrupt Stage
2 I nterrupts
Disabled
Check for
Fetch next Execute interrupt;
instruction ingruction | nterrupts initiate interrupt
handler

Enabled

(HALT ’

Figure 1.7 Instruction Cycle with I nterrupts

Time

HON

1/O operation;
processor waits

1/0O operation;
processor waits

®
_
HON
®
@
_
HON

©

(a) Without interrupts

!

!

2lejelole[e|eje|e

(b) With interrupts

1/O operation
concurrent with
processor executing

1/0 operation
concurrent with
processor executing

Figure1.8 Program Timing: Short I/O Wait

Time

1/O operation;

1/0O operation
processor waits :

concurrent with
processor executing;
then processor
waits

1/0O operation
concurrent with
processor executing;
then processor
waits

1/O operation;
processor waits

Jol Jol
(4 (9
B c
© B
@) 0
L (4)
i @
© 5

@ (b) With interrupts

(a) Without interrupts

Figure1.9 Program Timing: Long /O Wait

Hardware Software

——A ——A

Device controller or
other system hardware
issuesan interrupt

\ 4
Save remainder of
process sate

Y information
Processor finishes

execution of current
instruction

Processinterrupt

y
Processor signals
acknowledgment
of interrupt

y

Restore process state
information

Processor pushes PSW
and PC onto control
stack

Restore old PSW
and PC

Processor loads new
PC value based on
interrupt

Figure 1.10 Simple I nterrupt Processing

T-M
Control z Y
Stack |
T f J
N+1
Program
Counter
Y [Start {
Interrupt General
Service Registers
Y+ L [Return| Routine CT]
Stack
Pointer
Processor
T-M
N .
N+ 1 User's
Program
Main
Memory

(a) Interrupt occursafter instruction
at location N

T-M
N+1
Control z
Stack
T —
Y+L+1
Program
Counter
Y [Start {
Interrupt General
Service Registers
Y + L [Return| Routine [T-—M]
Stack
Pointer
Processor
T
N :
N+1 User's
Program
Main
Memory

(b) Return from interrupt

Figure 1.11 Changesin Memory and Regigersfor an I nterrupt

- Multiple Interrupts

An interrupt occurs
while another interrupt Two approaches:
1s being processed

* e.g. receiving data from Disable interrupts
a communications line while an interrupt is
and printing results at being processed

the same time « Use a priority scheme

I nterrupt
User Program Handler X

A
A
iy A
iy A
iy A
iy A
_..l/ j
] -A
= L
A
= I nterrupt
E Handler Y
a ~2
= A
= a
3 2
= A
= A
= A
= A
o A
= a
D \:

(a) Sequential interrupt processing
I nterrupt
User Program Handler X

2 -3
iy A
iy A
a A
a jx
_.-‘< 2
: \ Y
a A
a — A
A
3 I nterrupt
= andler Y
A _.
= A
= A
o A
o A
= Y
= A
= A
= A
o A
o A
= Y
= A
D A

(b) Nested interrupt processing

Figure 1.12 Transfer of Control with Multiple I nterrupts

Printer Communication

peerRTossE interrupt serviceroutine interrupt service routine

Aat=0 A -A
Y Y Y
Y Y Y
A A ,»(o A
Y N A NG Y
Y 7 Y Y
A ’ A A
A A A
- i< L5 .

_n\ "
AT A
A A i
Y t\\q i - DIQ(. -
N 0 a Interrupt service routine
A A
A S~ [~ A
Y Y
A Y
A A
Y Y
Y A
Y A
A Y
A Y
Y A
a R

Figure1.13 Example Time Sequence of M ultiple | nterrupts

m Design constraints on a computer’s memory
® How much?
® How fast?
® How expensive?

m If the capacity is there, applications will likely be
developed to use 1t

m Memory must be able to keep up with the processor

m Cost of memory must be reasonable 1n relationship
to the other components

Memory Relationships

Faster
access time
= greater
cost per bit

Greater capacity
= smaller cost per

bit

Greater
capacity =
slower access
speed

The Memory Hierarchy

" Going down the
hierarchy:

» Decreasing cost per bit
> Increasing capacity
> Increasing access time

> Decreasing frequency of
access to the memory by
the processor

Figure1.14 TheMemory Hierarchy

_|
(BN

+
%3

o
I

Average access time

—
[EEN
I

0 1
Fraction of accesses involving only Level 1 (Hit ratio)

Figure 1.15 Performance of a Simple Two-Level Memory

Principle of Locality

m Memory references by the processor tend to
cluster

m Data 1s organized so that the percentage of
accesses to each successively lower level 1s
substantially less than that of the level above

m Can be applied across more than two levels of
memory

Secondary

Memory

Also
referred to
as auxiliary
memory

 External
 Nonvolatile

 Used to store
program and
data files

Cache Memory

m [nvisible to the OS
m Interacts with other memory management hardware

m Processor must access memory at least once per instruction
cycle

m Processor execution is limited by memory cycle time

m Exploit the principle of locality with a small, fast memory

Block Transfer

Word Transfer r'\k/\
CPU Cache Main Memory
Fast Slow
(a) Single cache
CPU Level 1 Level 2 Level 3 |F—»| Main
(L1) cache (L2) cache (L3) cache | le— Memory
Fagtest Fast
Less Slow
fast

(b) Three-level cache organization

Figure 1.16 Cache and Main Memory

Line Memory

Number Tag Block address
0 0
d 1
2 2 Block 0
3 (K words)
C-1
Block Length
(K Words)
(a) Cache
Block M — 1
2M-1
Word
Length

(b) Main memory

Figure 1.17 Cache/Main-Memory Structure

(START ’

A 4

Receive address
RA from CPU

A 4

RA - read address

Is block \ No
containing RA /

in cache?

Yes

Fetch RA word
and deliver
to CPU

Access main
memory for block
containing RA

A 4

Allocate cache
slot for main
memory block

Load main
memory block
into cache slot

Deliver RA word
to CPU

Figure 1.18 Cache Read Operation

C a‘Che Number

of cache

DeSign levels

Block size

Main
categories
are:

Write
policy

Mapping
function

Replacement

algorithm

Cache and Block Size

Cache Size

-

b

Small caches have
significant impact
on performance

n

The unit of data
exchanged

between cache and

4

main memory
L& Y.

‘Mapping Function

® Determines which cache
location the block will occupy

When one block is read
in, another may have to be
replaced

Two constraints affect

design:

The more flexible the
mapping function, the
more complex is the
circuitry required to
search the cache

Replacement Algorithm

® T east Recently Used (LRU) Algorithm

m Effective strategy 1s to replace a block that
has been in the cache the longest with no
references to it

m Hardware mechanisms are needed to
identify the least recently used block

* Chooses which block to replace when a
new block 1s to be loaded into the cache

f’.‘.’-\“ *
e

e (R
. By = . . 5 '
ﬁ‘ ’ 4 .), ..7~ e &
I q » . v W
r . - .:
= 2 :“ ¥ "'-‘i'»-' ‘ N 4 i] >
. X ’ ..:" e

Dictates when the memory write operation
takes place

« Can occur every time the block 1s updated

« Can occur when the block 1s replaced
* Minimizes write operations
» Leaves main memory in an obsolete state

10 Techniques

® When the processor encounters an instruction relating
to I/0, 1t executes that instruction by 1ssuing a command
to the appropriate I/O module

Three techniques are possible for I/0O operations:

Programmed Interrupt- Direct Memory
I/0 Driven I/0 Access (DMA)

Programmed 1/0

m The I/0O module performs the requested action
then sets the appropriate bits in the I/0 status
register

m The processor periodically checks the status of the
I/0O module until 1t determines the instruction is
complete

m With programmed I/0 the performance level of
the entire system 1s severely degraded

Processor

issues an I/0 The processor
command to a executes the
module and data transfer
then goes on and then
to do some resumes its
other useful former
work processing

The I/0O module will More efficient than
then interrupt the Programmed 1/0 but
processor to request still requires active
service when it is intervention of the
ready to exchange processor to transfer
data with the data between memory

processor and an I/0O module

Interrupt-Driven I1/0
Drawbacks

m Transfer rate 1s limited by the speed with
which the processor can test and service a
device

m The processor 1s tied up 1n managing an 1/0
transfer

= A number of instructions must be
executed for each I/0 transfer

Dlrect Memory Access
~(DMA)

" Performed by a separate module on the system bus or
incorporated into an I/0 module

When the processor wishes to read or write data it

issues a command to the DMA module containing:

 Whether a read or write 1s requested

» The address of the I/0 device involved

» The starting location in memory to read/write
* The number of words to be read/written

Direct Memory Access

m Transfers the entire block of data directly to
and from memory without going through the
ProCcessor

m Processor is involved only at the beginning and end of the
transfer

m Processor executes more slowly during a transfer when
processor access to the bus 1s required

m More efficient than interrupt-driven or
programmed 1/0

Symmetric Multiprocessors
. (SMP)

m A stand-alone computer system with the

following characteristics:

m Two or more similar processors of comparable capability

m Processors share the same main memory and are
interconnected by a bus or other internal connection scheme

m Processors share access to I/0 devices
m All processors can perform the same functions

m The system 1s controlled by an integrated operating system
that provides interaction between processors and their
programs at the job, task, file, and data element levels

SMP Advantages

Performance

» A system with multiple
processors will yield greater
performance if work can be
done in parallel

Availability

» The failure of a single
processor does not halt the
machine

Scaling

» Vendors can offer a range of
products with different price
and performance
characteristics

Incremental Growth

» An additional processor can
be added to enhance
performance

Processor

L1 Cache

L2 Cache

Processor

L1 Cache

Main
Memory

L2 Cache

System Bus

Processor

L1 Cache

L2 Cache

/O
Subsystem

/0
Adapter

/0
Adapter

/0
Adapter

Figure 1.19 Symmetric M ultipr ocessor Organization

Multicore Computer

m Also known as a chip multiprocessor

m Combines two or more processors (Cores) on a
single piece of silicon (die)
m Each core consists of all of the components of an
independent processor

m [n addition, multicore chips also include L2
cache and 1n some cases 1.3 cache

Core 0 Core 1 Core 6 Core 7
32 KB[32KB| [32kB[32 kB LA 32kB(32KkB| [32KkB[32KkB
L1-I (L1-D| [L1-I|L1-D L1-I (L1-D| | L1-I|L1-D

256 kB 256 kB 256 kB 256 kB
L2 Cache L2 Cache L2 Cache L2 Cache

20 MB
L3 Cache
DDR4 Memory PCI Express
Controllers
4x8B @ 2,133 GT/s 40 lanes @ 8§ GT/s

(a) Block diagram

(b) Physical layout on chip
Figure 1.20 Intel Core i7-5960X Block Diagram

	Slide 1: Operating Systems and Computer Hardware
	Slide 2: 2. Computer System Overview
	Slide 3: Outline
	Slide 4: Operating System
	Slide 5: Basic Elements
	Slide 6: Processor
	Slide 7: Main Memory
	Slide 8: I/O Modules
	Slide 9: System Bus
	Slide 10
	Slide 11: Microprocessor
	Slide 12: Graphical Processing Units (GPU’s)
	Slide 13: Digital Signal Processors (DSPs)
	Slide 14: System on a Chip (SoC)
	Slide 15: Instruction Execution
	Slide 16
	Slide 17: Instruction Fetch and Execute
	Slide 18: Instruction Register (IR)
	Slide 19
	Slide 20
	Slide 21: Interrupts
	Slide 22
	Slide 23: Flow of Control Without Interrupts
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32: Multiple Interrupts
	Slide 33
	Slide 34
	Slide 35: Memory Hierarchy
	Slide 36: Memory Relationships
	Slide 37: The Memory Hierarchy
	Slide 38
	Slide 39: Principle of Locality
	Slide 40
	Slide 41: Cache Memory
	Slide 42
	Slide 43
	Slide 44
	Slide 45: Cache Design
	Slide 46: Cache and Block Size
	Slide 47: Mapping Function
	Slide 48: Replacement Algorithm
	Slide 49: Write Policy
	Slide 50: I/O Techniques
	Slide 51: Programmed I/O
	Slide 52: Interrupt-Driven I/O
	Slide 53: Interrupt-Driven I/O Drawbacks
	Slide 54: Direct Memory Access (DMA)
	Slide 55: Direct Memory Access
	Slide 56: Symmetric Multiprocessors (SMP)
	Slide 57: SMP Advantages
	Slide 58
	Slide 59: Multicore Computer
	Slide 60

