
Operating Systems and Computer

Hardware

Prof. Dr. Hasan Hüseyin BALIK

(2nd Week)

Outline

1. Overview

—Basic Concepts and Computer Evolution

—Performance Issues

+

1.2 Performance Issues

1.2 Outline

• Designing for Performance

• Multicore, MICs, and GPGPUs

• Two Laws that Provide Insight: Ahmdahl’s
Law and Little’s Law

• Basic Measures of Computer Performance

• Calculating the Mean

• Benchmarks and SPEC

Designing for Performance
• The cost of computer systems continues to drop dramatically, while the performance and

capacity of those systems continue to rise equally dramatically

• Today’s laptops have the computing power of an IBM mainframe from 10 or 15 years ago

• Processors are so inexpensive that we now have microprocessors we throw away

• Desktop applications that require the great power of today’s microprocessor-based

systems include:

– Image processing

– Three-dimensional rendering

– Speech recognition

– Videoconferencing

– Multimedia authoring

– Voice and video annotation of files

– Simulation modeling

• Workstation systems now support highly sophisticated engineering and scientific

applications and have the capacity to support image and video applications.

• Businesses are relying on increasingly powerful servers to handle transaction and

database processing and to support massive client/server networks that have replaced

the huge mainframe computer centers of yesteryear

• Cloud service providers use massive high-performance banks of servers to satisfy high-

volume, high-transaction-rate applications for a broad spectrum of clients

Microprocessor Speed

Techniques built into contemporary processors include:

Pipelining

Branch prediction

Superscalar
execution

Data flow analysis

Speculative
execution

• Processor moves data or instructions into a
conceptual pipe with all stages of the pipe processing
simultaneously

• Processor looks ahead in the instruction code fetched
from memory and predicts which branches, or groups
of instructions, are likely to be processed next

• This is the ability to issue more than one instruction in
every processor clock cycle. (In effect, multiple
parallel pipelines are used.)

• Processor analyzes which instructions are dependent
on each other’s results, or data, to create an
optimized schedule of instructions

• Using branch prediction and data flow analysis, some
processors speculatively execute instructions ahead
of their actual appearance in the program execution,
holding the results in temporary locations, keeping
execution engines as busy as possible

Performance Balance

• Adjust the organization and

architecture to compensate

for the mismatch among the

capabilities of the various

components

• Architectural examples

include:

Increase the number
of bits that are

retrieved at one time
by making DRAMs
“wider” rather than

“deeper” and by
using wide bus data

paths

Change the DRAM

interface to make it

more efficient by

including a cache or

other buffering

scheme on the DRAM

chip

Reduce the frequency
of memory access by

incorporating
increasingly complex

and efficient cache
structures between
the processor and

main memory

Increase the
interconnect

bandwidth between
processors and

memory by using
higher speed buses
and a hierarchy of
buses to buffer and
structure data flow

101 102 103 104 105 106 107 108 109 1010 1011

Data Rate (bps)

Ethernet modem

(max speed)

Figure 2.1 Typical I/O Device Data Rates

Graphics display

Wi-Fi modem

(max speed)

Hard disk

Optical disc

Laser printer

Scanner

Mouse

Keyboard

Improvements in Chip Organization and

Architecture

• Increase hardware speed of processor
– Fundamentally due to shrinking logic gate size

▪ More gates, packed more tightly, increasing clock rate

▪ Propagation time for signals reduced

• Increase size and speed of caches
– Dedicating part of processor chip

▪ Cache access times drop significantly

• Change processor organization and architecture
– Increase effective speed of instruction execution

– Parallelism

Problems with Clock Speed and Logic

Density

• Power
– Power density increases with density of logic and clock speed

– Dissipating heat

• RC delay
– Speed at which electrons flow limited by resistance and capacitance

of metal wires connecting them

– Delay increases as the RC product increases

– As components on the chip decrease in size, the wire interconnects
become thinner, increasing resistance

– Also, the wires are closer together, increasing capacitance

• Memory latency and throughput
– Memory access speed (latency) and transfer speed (throughput) lag

processor speeds

Figure 2 .2 Processor Trends

0.1

1

10

1970 1975 1980 1985 1990 1995 2000 2005 2010

Transistors (Thousands)

Frequency (MHz)

Power (W)

Cores

102

103

104

105

106

107

Multicore
The use of multiple
processors on the same chip
provides the potential to
increase performance without
increasing the clock rate

Strategy is to use two simpler
processors on the chip rather
than one more complex
processor

With two processors larger
caches are justified

As caches became larger it
made performance sense to
create two and then three
levels of cache on a chip

Many Integrated Core (MIC)

Graphics Processing Unit (GPU)

MIC

• Leap in performance as well

as the challenges in

developing software to

exploit such a large number

of cores

• The multicore and MIC

strategy involves a

homogeneous collection of

general purpose processors

on a single chip

• Core designed to perform

parallel operations on graphics

data

• Traditionally found on a plug-in

graphics card, it is used to

encode and render 2D and 3D

graphics as well as process

video

• Used as vector processors for

a variety of applications that

require repetitive computations

GPU

Amdahl’s Law

• Amdahl’s law was first proposed by Gene Amdahl in

1967

• Deals with the potential speedup of a program using

multiple processors compared to a single processor

• Illustrates the problems facing industry in the

development of multi-core machines

– Software must be adapted to a highly parallel execution

environment to exploit the power of parallel processing

• Can be generalized to evaluate and design technical

improvement in a computer system

Speedup =

Time to execute program on a single processor

Time to execute program on N parallel

processors

=T(1 - f) + Tf

T(1 - f) +Tf

N

T is the total execution time of the program using a single processor

f is a fraction of the execution time involves code that is infinitely

parallelizable with no scheduling overhead

Figure 2 .3 I llust rat ion of Am dahl’s Law

T

(1 – f)T

(1 – f)T

fT

fT

N

1 f 1
1

N
T

Num ber of Processors

Figure 2 .4 Am dahl’s Law for Mult iprocessors

S
p

e
d

u
p

f = 0 .9 5

f = 0 .9 0

f = 0 .7 5

f = 0 .5

Little’s Law

• Fundamental and simple relation with broad applications

• Can be applied to almost any system that is statistically in
steady state, and in which there is no leakage

• Queuing system
– If server is idle an item is served immediately, otherwise an arriving

item joins a queue

– There can be a single queue for a single server or for multiple servers,
or multiple queues with one being for each of multiple servers

• Average number of items in a queuing system equals the
average rate at which items arrive multiplied by the time that
an item spends in the system

– Relationship requires very few assumptions

– Because of its simplicity and generality it is extremely useful

Ic p m k

Instruction set architecture X X

Compiler technology X X X

Processor implementation X X

Cache and memory hierarchy X X

Performance Factors and System Attributes

Ic : Instruction Count

p : The number of processor cycles needed to decode and execute the instruction

m: The number of memory references needed

k: the ratio between memory cycle time and processor cycle time

 : cycle time (1/f)

CPI: Clock cycle per instruction

T: The time needed to execute a given programe

Calculating the Mean

The use of benchmarks to
compare systems involves

calculating the mean value of
a set of data points related to

execution time

The three
common

formulas used
for calculating

a mean are:

• Arithmetic

• Geometric

• Harmonic

0 2 4 6 8 9 101 3 5 7 11

MD

AM

GM

HM

(a)

MD

AM

GM

HM

(b)

MD

AM

GM

HM

(c)

MD

AM

GM

HM

(d)

MD

AM

GM

HM

(e)

MD

AM

GM

HM

(f)

MD

AM

GM

HM

MD = median

AM = arithmetic mean

GM = geometric mean

HM = harmonic mean

(a) Constant (11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11)

(b) Clustered around a central value (3, 5, 6, 6, 7, 7, 7, 8, 8, 9, 1 1)

(c) Uniform distribution (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1 1)

(d) Large-number bias (1, 4, 4, 7, 7, 9, 9, 10, 10, 1 1, 11)

(e) Small-number bias(1, 1, 2, 2, 3, 3, 5, 5, 8, 8, 1 1)

(f) Upper outlier (11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

(g) Lower outlier (1, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11)

(g)

Figure 2.6 Comparison of Means on Various Data Sets

(each set has a maximum data point value of 11)

Arithmetic Mean
◼ An Arithmetic Mean (AM) is an appropriate measure

if the sum of all the measurements is a meaningful

and interesting value

◼ The AM is a good candidate for comparing the execution

time performance of several systems

◼ The AM used for a time-based variable, such as program execution time, has the
important property that it is directly proportional to the total time

◼ If the total time doubles, the mean value doubles

For example, suppose we were interested in using a system

for large-scale simulation studies and wanted to evaluate several

alternative products. On each system we could run the simulation

multiple times with different input values for each run, and then take

the average execution time across all runs. The use of

multiple runs with different inputs should ensure that the results are

not heavily biased by some unusual feature of a given input set. The

AM of all the runs is a good measure of the system’s performance on

simulations, and a good number to use for system comparison.

Computer

A time

(secs)

Computer

B time

(secs)

Computer

C time

(secs)

Computer

A rate

(MFLOPS)

Computer

B rate

(MFLOPS)

Computer

C rate

(MFLOPS)

Program 1

(108 FP ops)
2.0 1.0 0.75 50 100 133.33

Program 2

(108 FP ops)
0.75 2.0 4.0 133.33 50 25

Total

execution

time

2.75 3.0 4.75 – – –

Arithmetic

mean of

times

1.38 1.5 2.38 – – –

Inverse

of total

execution

time (1/sec)

0.36 0.33 0.21 – – –

Arithmetic

mean of

rates

– – – 91.67 75.00 79.17

Harmonic

mean of

rates

– – – 72.72 66.67 42.11

A Comparison of Arithmetic and Harmonic Means for Rates

Computer A time Computer B time Computer C time

Program 1 2.0 (1.0) 1.0 (0.5) 0.75 (0.38)

Program 2 0.75 (1.0) 2.0 (2.67) 4.0 (5.33)

Total execution time 2.75 3.0 4.75

Arithmetic mean of

normalized times
1.00 1.58 2.85

Geometric mean of

normalized times
1.00 1.15 1.41

(a) Results normalized to Computer A

(a) Results normalized to Computer B

Computer A time Computer B time Computer C time

Program 1 2.0 (2.0) 1.0 (1.0) 0.75 (0.75)

Program 2 0.75 (0.38) 2.0 (1.0) 4.0 (2.0)

Total execution time 2.75 3.0 4.75

Arithmetic mean of

normalized times
1.19 1.00 1.38

Geometric mean of

normalized times
0.87 1.00 1.22

A Comparison of Arithmetic and Geometric Means for Normalized

Results

Computer A time Computer B time Computer C time

Program 1 2.0 (1.0) 1.0 (0.5) 0.20 (0.1)

Program 2 0.4 (1.0) 2.0 (5.0) 4.0 (10.0)

Total execution time 2.4 3.00 4.2

Arithmetic mean of

normalized times
1.00 2.75 5.05

Geometric mean of

normalized times
1.00 1.58 1.00

(a) Results normalized to Computer A

(a) Results normalized to Computer B

Computer A time Computer B time Computer C time

Program 1 2.0 (2.0) 1.0 (1.0) 0.20 (0.2)

Program 2 0.4 (0.2) 2.0 (1.0) 4.0 (2.0)

Total execution time 2.4 3.0 4.2

Arithmetic mean of

normalized times
1.10 1.00 1.10

Geometric mean of

normalized times
0.63 1.00 0.63

Another Comparison of Arithmetic and Geometric Means for

Normalized Results

Benchmark Principles

• Desirable characteristics of a benchmark
program:

1. It is written in a high-level language, making it portable
across different machines

2. It is representative of a particular kind of programming

domain or paradigm, such as systems programming,

numerical programming, or commercial programming

3. It can be measured easily

4. It has wide distribution

System Performance Evaluation

Corporation (SPEC)

• Benchmark suite

– A collection of programs, defined in a high-level language

– Together attempt to provide a representative test of a computer in a

particular application or system programming area

– SPEC

– An industry consortium

– Defines and maintains the best known collection of benchmark suites

aimed at evaluating computer systems

– Performance measurements are widely used for comparison and

research purposes

SPEC CPU2017

• Best known SPEC benchmark suite

• Industry standard suite for processor intensive applications

• Appropriate for measuring performance for applications that

spend most of their time doing computation rather than I/O

• Consists of 20 integer benchmarks and 23 floating-point

benchmarks written in C, C++, and Fortran

• For all of the integer benchmarks and most of the floating-

point benchmarks, there are both rate and speed benchmark

programs

• The suite contains over 11 million lines of code

Kloc = line count (including comments/whitespace) for source files used in a build/1000

Rate Speed Language Kloc Application Area

500.perlbench_r 600.perlbench_s C 363 Perl interpreter

502.gcc_r 602.gcc_s C 1304 GNU C compiler

505.mcf_r 605.mcf_s C 3 Route planning

520.omnetpp_r 620.omnetpp_s C++ 134 Discrete event simulation - computer

network

523.xalancbmk_r 623.xalancbmk_s C++ 520 XML to HTML conversion via XSLT

525.x264_r 625.x264_s C 96 Video compression

531.deepsjeng_r 631.deepsjeng_s C++ 10 AI: alpha-beta tree search (chess)

541.leela_r 641.leela_s C++ 21 AI: Monte Carlo tree search (Go)

548.exchange2_r 648.exchange2_s Fortran 1 AI: recursive solution generator

(Sudoku)

557.xz_r 657.xz_s C 33 General data compression

(A)

SPEC

CPU2017

Benchmarks

Kloc = line count (including comments/whitespace) for source files used in a build/1000

Rate Speed Language Kloc Application Area

503.bwaves_r 603.bwaves_s Fortran 1 Explosion modeling

507.cactuBSSN_r 607.cactuBSSN_s C++, C,

Fortran

257 Physics; relativity

508.namd_r C++, C 8 Molecular dynamics

510.parest_r C++ 427 Biomedical imaging; optical

tomography with finite elements

511.povray_r C++ 170 Ray tracing

519.ibm_r 619.ibm_s C 1 Fluid dynamics

521.wrf_r 621.wrf_s Fortran, C 991 Weather forecasting

526.blender_r C++ 1577 3D rendering and animation

527.cam4_r 627.cam4_s Fortran, C 407 Atmosphere modeling

628.pop2_s Fortran, C 338 Wide-scale ocean modeling

(climate level)

538.imagick_r 638.imagick_s C 259 Image manipulation

544.nab_r 644.nab_s C 24 Molecular dynamics

549.fotonik3d_r 649.fotonik3d_s Fortran 14 Computational electromagnetics

554.roms_r 654.roms_s Fortran 210 Regional ocean modeling.

(B)

SPEC

CPU2017

Benchmarks

SPEC

CPU 2017

Integer

Benchmarks

for HP

Integrity

Superdome X

(a) Rate Result

(768 copies)

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Benchmark

Base Peak

Seconds Rate Seconds Rate

500.perlbench_r

1141 1070 933 1310

502.gcc_r
1303 835 1276 852

505.mcf_r
1433 866 1378 901

520.omnetpp_r

1664 606 1634 617

523.xalancbmk_r

722 1120 713 1140

525.x264_r
655 2053 661 2030

531.deepsjeng_r

604 1460 597 1470

541.leela_r
892 1410 896 1420

548.exchange2_r

833 2420 770 2610

557.xz_r
870 953 863 961

Benchmark

Base Peak

Seconds Ratio Seconds Ratio

600.perlbench_s

358 4.96 295 6.01

602.gcc_s
546 7.29 535 7.45

605.mcf_s
866 5.45 700 6.75

620.omnetpp_s

276 5.90 247 6.61

623.xalancbmk_s

188 7.52 179 7.91

625.x264_s
283 6.23 271 6.51

631.deepsjeng_s

407 3.52 343 4.18

641.leela_s
469 3.63 439 3.88

648.exchange2_s

329 8.93 299 9.82

657.xz_s
2164 2.86 2119 2.92

SPEC

CPU 2017

Integer

Benchmarks

for HP

Integrity

Superdome X

(b) Speed

Result

(384 threads)

Terms Used in SPEC Documentation

• Benchmark

– A program written in a high-level

language that can be compiled and

executed on any computer that

implements the compiler

• System under test

– This is the system to be evaluated

• Reference machine

– This is a system used by SPEC to

establish a baseline performance for all

benchmarks

▪ Each benchmark is run and

measured on this machine to

establish a reference time for that

benchmark

• Base metric

– These are required for all reported

results and have strict guidelines for

compilation

• Peak metric

– This enables users to attempt to

optimize system performance by

optimizing the compiler output

• Speed metric

– This is simply a measurement of the

time it takes to execute a compiled

benchmark

• Used for comparing the ability of a

computer to complete single tasks

• Rate metric

– This is a measurement of how many

tasks a computer can accomplish in a

certain amount of time

• This is called a throughput, capacity,

or rate measure

• Allows the system under test to

execute simultaneous tasks to take

advantage of multiple processors

Start

Get next
program

Run program
three times

Select
median value

Ratio(prog) =
Tref(prog)/TSUT(prog)

More
programs?

Compute geometric
mean of all ratios

End

Yes No

Figure 2.7 SPEC Evaluation Flowchart

Benchmark Seconds Energy (kJ) Average Power

(W)

Maximum

Power (W)

600.perlbench_s

1774 1920 1080 1090

602.gcc_s
3981 4330 1090 1110

605.mcf_s
4721 5150 1090 1120

620.omnetpp_s

1630 1770 1090 1090

623.xalancbmk_s

1417 1540 1090 1090

625.x264_s
1764 1920 1090 1100

631.deepsjeng_s

1432 1560 1090 1130

641.leela_s
1706 1850 1090 1090

648.exchange2_s

2939 3200 1080 1090

657.xz_s
6182 6730 1090 1140

SPECspeed

2017_int_base

Benchmark

Results for

Reference

Machine (1

thread)

	Slide 1: Operating Systems and Computer Hardware Prof. Dr. Hasan Hüseyin BALIK (2nd Week)
	Slide 2: Outline
	Slide 3
	Slide 4: 1.2 Outline
	Slide 5: Designing for Performance
	Slide 6: Microprocessor Speed
	Slide 7: Performance Balance
	Slide 8
	Slide 9: Improvements in Chip Organization and Architecture
	Slide 10: Problems with Clock Speed and Logic Density
	Slide 11
	Slide 12: Multicore
	Slide 13: Many Integrated Core (MIC) Graphics Processing Unit (GPU)
	Slide 14: Amdahl’s Law
	Slide 15
	Slide 16
	Slide 17: Little’s Law
	Slide 18
	Slide 19: Performance Factors and System Attributes
	Slide 20: Calculating the Mean
	Slide 21
	Slide 22: Arithmetic Mean
	Slide 23: A Comparison of Arithmetic and Harmonic Means for Rates
	Slide 24: A Comparison of Arithmetic and Geometric Means for Normalized Results
	Slide 25: Another Comparison of Arithmetic and Geometric Means for Normalized Results
	Slide 26: Benchmark Principles
	Slide 27: System Performance Evaluation Corporation (SPEC)
	Slide 28: SPEC CPU2017
	Slide 29: (A) SPEC CPU2017 Benchmarks
	Slide 30: (B) SPEC CPU2017 Benchmarks
	Slide 31: SPEC CPU 2017 Integer Benchmarks for HP Integrity Superdome X (a) Rate Result (768 copies)
	Slide 32: SPEC CPU 2017 Integer Benchmarks for HP Integrity Superdome X (b) Speed Result (384 threads)
	Slide 33: Terms Used in SPEC Documentation
	Slide 34
	Slide 35: SPECspeed 2017_int_base Benchmark Results for Reference Machine (1 thread)

