

Operating Systems and Computer Hardware

Prof. Dr. Hasan Hüseyin BALIK ($1^{\text {st }}$ Week)

Outline

1. Overview of Computer Hardware -Basic Concepts and Computer Evolution -Performance Issues

,
 1.1 Basic Concepts and Computer Evolution

1.1 Outline

- Organization and Architecture
- Structure and Function
- The IAS Computer
- Gates, Memory Cells, Chips, and Multichip Modules
- The Evolution of the Intel $x 86$ Architecture
- Embedded Systems
- ARM Architecture

Computer Architecture

Computer Organization

IBM System

370 Architecture

- IBM System/370 architecture
- Was introduced in 1970
- Included a number of models
- Could upgrade to a more expensive, faster model without having to abandon original software
- New models are introduced with improved technology, but retain the same architecture so that the customer's software investment is protected
- Architecture has survived to this day as the architecture of IBM's mainframe product line

Structure and Function

- Hierarchical system
- Set of interrelated subsystems
- Hierarchical nature of complex systems is essential to both their design and their description
- Designer need only deal with a particular level of the system at a time
- Concerned with structure and function at each level
- Structure
- The way in which components relate to each other
- Function
- The operation of individual components as part of the structure

Function

- There are four basic functions that a computer can perform:
- Data processing
- Data may take a wide variety of forms and the range of processing requirements is broad
- Data storage
- Short-term
- Long-term
- Data movement
- Input-output (I/O) - when data are received from or delivered to a device (peripheral) that is directly connected to the computer
- Data communications - when data are moved over longer distances, to or from a remote device
- Control
- A control unit manages the computer's resources and orchestrates the performance of its functional parts in response to instructions

Structure

The Computer: Top-Level Structure

There are four main structural components of the computer:

- CPU - controls the operation of the computer and performs its data processing functions
- Main Memory - stores data
- I/O - moves data between the computer and its external environment
- System Interconnection - some mechanism that provides for communication among CPU, main memory, and I/O

CPU

Major structural components:

- Control Unit
- Controls the operation of the CPU and hence the computer
- Arithmetic and Logic Unit (ALU)
- Performs the computer's data processing function
- Registers
- Provide storage internal to the CPU
- CPU Interconnection
- Some mechanism that provides for communication among the control unit, ALU, and registers

Multicore Computer Structure

- Central processing unit (CPU)
- Portion of the computer that fetches and executes instructions
- Consists of an ALU, a control unit, and registers
- Referred to as a processor in a system with a single processing unit
- Core
- An individual processing unit on a processor chip
- May be equivalent in functionality to a CPU on a single-CPU system
- Specialized processing units are also referred to as cores
- Processor
- A physical piece of silicon containing one or more cores
- Is the computer component that interprets and executes instructions
- Referred to as a multicore processor if it contains multiple cores

Cache Memory

- Multiple layers of memory between the processor and main memory
- Is smaller and faster than main memory
- Used to speed up memory access by placing in the cache data from main memory that is likely to be used in the near future
- A greater performance improvement may be obtained by using multiple levels of cache, with level 1 (L1) closest to the core and additional levels (L2, L3, etc.) progressively farther from the core

Figure 1.2 Simplified View of Major Elements of a Multicore Computer

Motherboard with Two Intel Quad-Core Xeon Processors

Source: Courtesy of Chassis Plans Rugged Rackmount Computers

History of Computers First Generation: Vacuum Tubes

- Vacuum tubes were used for digital logic elements and memory
- IAS computer
- Fundamental design approach was the stored program concept
- Attributed to the mathematician John von Neumann
- First publication of the idea was in 1945 for the EDVAC
- Design began at the Princeton Institute for Advanced Studies
- Completed in 1952
- Prototype of all subsequent general-purpose computers

Central processing unit (CPU)

Figure 1.6 IAS Structure

(b) Instruction word

Figure 1.7 IAS Memory Formats

Registers

Memory buffer register (MIBR)	- Contains a word to be stored in memory or sent to the I/O unit - Or is used to receive a word from memory or from the I/O unit
Memory address register (MAR)	- Specifies the address in memory of the word to be written from or read into the MBR
Instruction register (IR)	- Contains the 8 -bit opcode instruction being executed
Instruction buffer register (IBR)	- Employed to temporarily hold the right-hand instruction from a word in memory
Program counter (PC)	- Contains the address of the next instruction pair to be fetched from memory
Accumulator (AC) and multiplier quotient (MO)	- Employed to temporarily hold operands and results of $A L U$ operations

The IAS Instruction Set

Instruction Type	Opcode	Symbolic Representation	Description		
Data transfer	00001010	LOAD MQ	Transfer contents of register MQ to the accumulator AC		
	00001001	LOAD MQ, M (X)	Transfer contents of memory location X to MQ		
	00100001	STOR M (X)	Transfer contents of accumulator to memory location X		
	00000001	LOAD M (X)	Transfer M (X) to the accumulator		
	00000010	LOAD -M(X)	Transfer $-\mathrm{M}(\mathrm{X})$ to the accumulator		
	00000011	LOAD \|M(X)		Transfer absolute value of $M(X)$ to the accumulator	
	00000100	LOAD -\|M(X)		Transfer - $\|\mathrm{M}(\mathrm{X})\|$ to the accumulator	
Unconditional branch	00001101	JUMP M ($\mathrm{X}, 0: 19$)	Take next instruction from left half of $M(X)$		
	00001110	JUMP M (X,20:39)	Take next instruction from right half of $M(X)$		
Conditional Branch	00001111	$J U M P+M(X, 0: 19)$	Take next instruction from right half of $M(X)$		
	00010000	JUMP + M (X,20:39)	If number in the accumulator is nonnegative, take next instruction from right half of $M(X)$		
Arithmetic	00000101	ADD M(X)	Add $\mathrm{M}(\mathrm{X})$ to AC ; put the result in AC		
	00000111	ADD \|M(X)		Add \|M(X)	to AC; put the result in AC
	00000110	SUB M(X)	Subtract $M(X)$ from AC; put the result in $A C$		
	00001000	SUB \|M(X)		Subtract $\|M(X)\|$ from AC; put the remainder in AC	
	00001011	MUL M(X)	Multiply $M(X)$ by $M Q$; put most significant bits of result in AC, put least significant bits in MQ		
	00001100	DIV M(X)	Divide $A C$ by $M(X)$; put the quotient in $M Q$ and the remainder in $A C$		
	00010100	LSH	Multiply accumulator by 2; that is, shift left one bit position		
	00010101	RSH	Divide accumulator by 2 ; that is, shift right one position		
Address modify	00010010	STOR M (X,8:19)	Replace left address field at $M(X)$ by 12 rightmost bits of AC		
	00010011	STOR M (X,28:39)	Replace right address field at $M(X)$ by 12 rightmost bits of AC		

Figure 1.9 Fundamental Computer Elements

Integrated Circuits

- Data storage - provided by memory cells
- Data processing - provided by gates
- Data movement - the paths among components are used to move data from memory to memory and from memory through gates to memory
- Control - the paths among components can carry control signals
- A computer consists of gates, memory cells, and interconnections among these elements
- The gates and memory cells are constructed of simple digital electronic components
- Exploits the fact that such components as transistors, resistors, and conductors can be fabricated from a semiconductor such as silicon
- Many transistors can be produced at the same time on a single wafer of silicon
- Transistors can be connected with a processor metallization to form circuits

Transistors

- The fundamental building block of digital circuits used to construct processors, memories, and other digital logic devices
- Active part of the transistor is made of silicon or some other semiconductor material that can change its electrical state when pulsed
- In its normal state the material may be nonconductive or conductive
- The transistor changes its state when voltage is applied to the gate
- Discrete component
- A single, self-contained transistor
- Were manufactured separately, packaged in their own containers, and soldered or wired together onto Masonite-like circuit boards

(a) Close-up of packaged chip

(b) Chip on motherboard

Figure 1.11 Processor or Memory Chip on Motherboard

Figure 1.12 Growth in Transistor Counton Integrated Circuits (DRAMmemory)

Moore's Law

1965; Gordon Moore - co-founder of Intel

Observed number of transistors that could be put on a single chip was doubling every year

Consequences of Moore's law:

The pace slowed to a doubling every 18 months in the 1970's but has sustained that rate ever since

The cost of computer logic and memory circuitry has fallen at a dramatic rate

The electrical path length is
shortened, increasing operating speed

Computer becomes smaller and is more convenient to use in a variety of environments

> Reduction in power and cooling requirements

Fewer connections

Evolution of Intel Microprocessors (1 of 4)

	$\mathbf{4 0 0 4}$	$\mathbf{8 0 0 8}$	8080	8086	8088
Introduced	1971	1972	1974	1978	1979
Clock speeds	108 kHz	108 kHz	2 MHz	$2 \mathrm{MHz}, 8 \mathrm{MHz}, 10 \mathrm{MHz}$	$5 \mathrm{MHz}, 8 \mathrm{MHz}$
Bus width	4 bits	8 bits	8 bits	16 bits	8 bits
Number of transistors	2,300	3,500	6,000	29,000	29,000
Feature size $(\mu \mathrm{m})$	10	8	6	3	6
Addressable memory	640 bytes	16 KB	64 KB	1 MB	1 MB

(a) 1970s Processors

Evolution of Intel Microprocessors (2 of 4)

	$\mathbf{8 0 2 8 6}$	386TM DX	386TM SX	486TM DX CPU
Introduced	1982	1985	1988	1989
Clock speeds	$6-12.5 \mathrm{MHz}$	$16-33 \mathrm{MHz}$	$16-33 \mathrm{MHz}$	$25-50 \mathrm{MHz}$
Bus width	16 bits	32 bits	16 bits	32 bits
Number of transistors	134,000	275,000	275,000	1.2 million
Feature size $(\mu \mathrm{m})$	1.5	1	1	$0.8-1$
Addressable memory	16 MB	4 GB	16 MB	4 GB
Virtual memory	1 GB	64 TB	64 TB	64 TB
Cache	-	-	-	8 kB

(b) 1980s Processors

Evolution of Intel Microprocessors (3 of 4)

	486TM SX	Pentium	Pentium Pro	Pentium II
Introduced	1991	1993	1995	1997
Clock speeds	$16-33 \mathrm{MHz}$	$60-166 \mathrm{MHz}$	$150-200 \mathrm{MHz}$	$200-300 \mathrm{MHz}$
Bus width	32 bits	32 bits	64 bits	64 bits
Number of transistors	1.185 million	3.1 million	5.5 million	7.5 million
Feature size $(\mu \mathrm{m})$	1	0.8	0.6	0.35
Addressable memory	4 GB	4 GB	64 GB	64 GB
Virtual memory	64 TB	64 TB	64 TB	64 TB
Cache	8 kB	8 kB	$512 \mathrm{kB} \mathrm{L1}$ and $1 \mathrm{MB} \mathrm{L2}$	$512 \mathrm{kB} \mathrm{L2}$

(c) 1990s Processors

Evolution of Intel Microprocessors (4 of 4)

	Pentium III	Pentium 4	Core 2 Duo	Core i7 EE 4960X	Core i9- 7900X
Introduced	1999	2000	2006	2013	2017
Clock speeds	$450-660 \mathrm{MHz}$	$1.3-1.8 \mathrm{GHz}$	$1.06-1.2$ GHz	4 GHz	4.3 GHz
Bus width	64 bits				
Number of transistors	9.5 million	42 million	167 million	1.86 billion	7.2 billion
Feature size (nm)	250	180	65	22	14
Addressable memory	64 GB	64 GB	64 GB	64 GB	128 GB
Virtual memory	64 TB				
Cache	$512 \mathrm{kB} \mathrm{L2}$	$256 \mathrm{kB} \mathrm{L2}$	$2 \mathrm{MB} \mathrm{L2}$	$1.5 \mathrm{MB} \mathrm{L2/}$ $1.5 \mathrm{MB} \mathrm{L3}$	$14 \mathrm{MB} \mathrm{L3}$
Number of cores	1	1	2	6	10

(d) Recent Processors

Highlights of the Evolution of the Intel Product Line: (1 of 2)

- World's first generalpurpose microprocessor
- 8-bit machine, 8-bit data path to memory
- Was used in the first personal computer (Altair)

80486

- Introduced the use of much more sophisticated and powerful cache technology and sophisticated instruction pipelining
- Also offered a built-in math coprocessor

Highlights of the Evolution of the Intel Product Line: (2 of 2)

Pentium

- Intel introduced the use of superscalar techniques, which allow multiple instructions to execute in parallel

Pentium Pro

- Continued the move into superscalar organization with aggressive use of register renaming, branch prediction, data flow analysis, and speculative execution

Pentium II

- Incorporated Intel MMX technology, which is designed specifically to process video, audio, and graphics data efficiently

Pentium III

-Incorporated additional floating-point instructions
-Streaming SIMD Extensions (SSE)

Pentium 4

- Includes additional floating-point and other enhancements for multimedia

Core

- First Intel x86 micro-core

Core 2

- Extends the Core architecture to 64 bits
- Core 2 Quad provides four cores on a single chip
- More recent Core offerings have up to 10 cores per chip
- An important addition to the architecture was the Advanced Vector Extensions instruction set

Embedded Systems

- The use of electronics and software within a product
- Billions of computer systems are produced each year that are embedded within larger devices
- Today many devices that use electric power have an embedded computing system
- Often embedded systems are tightly coupled to their environment
- This can give rise to real-time constraints imposed by the need to interact with the environment
- Constraints such as required speeds of motion, required precision of measurement, and required time durations, dictate the timing of software operations
- If multiple activities must be managed simultaneously this imposes more complex real-time constraints

Figure 1.14 Possible Organization of an Embedded System

The Internet of Things (IoT)

- Term that refers to the expanding interconnection of smart devices, ranging from appliances to tiny sensors
- Is primarily driven by deeply embedded devices
- Generations of deployment culminating in the loT:
- Information technology (IT)
- PCs, servers, routers, firewalls, and so on, bought as IT devices by enterprise IT people and primarily using wired connectivity
- Operational technology (OT)
- Machines/appliances with embedded IT built by non-IT companies, such as medical machinery, SCADA, process control, and kiosks, bought as appliances by enterprise OT people and primarily using wired connectivity
- Personal technology
- Smartphones, tablets, and eBook readers bought as IT devices by consumers exclusively using wireless connectivity and often multiple forms of wireless connectivity
- Sensor/actuator technology
- Single-purpose devices bought by consumers, IT, and OT people exclusively using wireless connectivity, generally of a single form, as part of larger systems
- It is the fourth generation that is usually thought of as the loT and it is marked by the use of billions of embedded devices

Embedded

Operating

Systems

- There are two general approaches to developing an embedded operating system (OS):
- Take an existing OS and adapt it for the embedded application
- Design and implement an OS intended solely for embedded use

Application Processors

versus

Dedicated Processors

- Application processors
- Defined by the processor's ability to execute complex operating systems
- General-purpose in nature
- An example is the smartphone - the embedded system is designed to support numerous apps and perform a wide variety of functions
- Dedicated processor
- Is dedicated to one or a small number of specific tasks required by the host device
- Because such an embedded system is dedicated to a specific task or tasks, the processor and associated components can be engineered to reduce size and cost

Figure 1.15 Typical Microcontroller Chip Elements

Deeply Embedded Systems

- Subset of embedded systems
- Has a processor whose behavior is difficult to observe both by the programmer and the user
- Uses a microcontroller rather than a microprocessor
- Is not programmable once the program logic for the device has been burned into ROM
- Has no interaction with a user
- Dedicated, single-purpose devices that detect something in the environment, perform a basic level of processing, and then do something with the results
- Often have wireless capability and appear in networked configurations, such as networks of sensors deployed over a large area
- Typically have extreme resource constraints in terms of memory, processor size, time, and power consumption

ARM

Refers to a processor architecture that has evolved from RISC design principles and is used in embedded systems

Family of RISC-based microprocessors and microcontrollers designed by ARM Holdings, Cambridge, England

Chips are high-speed processors that are known for their small die size and low power requirements

Probably the most widely used embedded processor architecture and indeed the most widely used processor architecture of any kind in the world

Acorn RISC Machine/Advanced RISC Machine

ARM Products

