Computer and Network Security (Securty of Computer Systems)

Prof. Dr. Hasan Hüseyin BALIK

(3rd Week)

Outline

- 2. Computer security technology and principles
 - -2.1. Cryptographic Tools
 - -2.2. User Authentication
 - -2.3 Access Control
 - -2.4 Database and Data Center Security
 - 2.5 Malicious Software
 - -2.6. Denial-of-Service Attacks
 - 2.7 Intrusion Detection
 - 2.8 Firewalls and Intrusion Prevention Systems

2.2. User Authentication

2.2. Outline

- Electronic User Authentication Principles
- Password-Based Authentication
- Token-Based Authentication
- Biometric Authentication
- Remote User Authentication
- Security Issues for User Authentication

Authentication Process

- Fundamental building block and primary line of defense
- Basis for access control and user accountability

Identification step

 Presenting an identifier to the security system

Verification step

 Presenting or generating authentication information that corroborates the binding between the entity and the identifier

Table 3.1 Identification and Authentication Security Requirements (SP 800-171)

Basic Security Requirements:

- 1 Identify information system users, processes acting on behalf of users, or devices.
- 2 Authenticate (or verify) the identities of those users, processes, or devices, as a prerequisite to allowing access to organizational information systems.

Derived Security Requirements:

- **3** Use multifactor authentication for local and network access to privileged accounts and for network access to non-privileged accounts.
- 4 Employ replay-resistant authentication mechanisms for network access to privileged and non-privileged accounts.
- 5 Prevent reuse of identifiers for a defined period.
- **6** Disable identifiers after a defined period of inactivity.
- 7 Enforce a minimum password complexity and change of characters when new passwords are created.
- 8 Prohibit password reuse for a specified number of generations.
- **9** Allow temporary password use for system logons with an immediate change to a permanent password.
- 10 Store and transmit only cryptographically-protected passwords.
- **11** Obscure feedback of authentication information.

Figure 3.1 The NIST SP 800-63-3 E-Authentication Architectural Model

The four means of authenticating user identity are based on:

Something the individual knows

 Password, PIN, answers to prearranged questions Something the individual possesses (token)

 Smartcard, electronic keycard, physical key Something the individual is (static biometrics)

• Fingerprint, retina, face

Something the individual does (dynamic biometrics)

 Voice pattern, handwriting, typing rhythm

Figure 3.2 Multifactor Authentication

Risk Assessment for User Authentication

 There are three separate concepts:

Assurance Level

Describes an organization's degree of certainty that a user has presented a credential that refers to his or her identity

More specifically is defined as:

The degree of confidence in the vetting process used to establish the identity of the individual to whom the credential was issued

The degree of confidence that the individual who uses the credential is the individual to whom the credential was issued

Four levels of assurance

Level 1

• Little or no confidence in the asserted identity's validity

Level 2

•Some confidence in the asserted identity's validity

Level 3

• High confidence in the asserted identity's validity

Level 4

• Very high confidence in the asserted identity's validity

Potential Impact

- FIPS 199 defines three levels of potential impact on organizations or individuals should there be a breach of security:
 - o Low
 - An authentication error could be expected to have a limited adverse effect on organizational operations, organizational assets, or individuals
 - o Moderate
 - An authentication error could be expected to have a serious adverse effect
 - o High
 - An authentication error could be expected to have a severe or catastrophic adverse effect

Maximum Potential Impacts for Each Assurance Level

	Assurance Level Impact Profiles			
Potential Impact Categories for Authentication Errors	1	2	3	4
Inconvenience, distress, or damage to standing or reputation	Low	Mod	Mod	High
Financial loss or organization liability	Low	Mod	Mod	High
Harm to organization programs or interests	None	Low	Mod	High
Unauthorized release of sensitive information	None	Low	Mod	High
Personal safety	None	None	Low	Mod/ High
Civil or criminal violations	None	Low	Mod	High

Password-Based Authentication

- Widely used line of defense against intruders
 - User provides name/login and password
 - System compares password with the one stored for that specified login

• The user ID:

- $\circ\,$ Determines that the user is authorized to access the system
- Determines the user's privileges
- Is used in discretionary access control

Password Vulnerabilities

Purpuses using Salt

The salt serves three purposes:

- It prevents duplicate passwords from being visible in the password file. Even if two users choose the same password, those passwords will be assigned different salt values.
- It greatly increases the difficulty of offline dictionary attacks. For a salt of length b bits, the number of possible passwords is increased by a factor of 2b, increasing the difficulty of guessing a password in a dictionary attack
- It becomes nearly impossible to find out whether a person with passwords on two or more systems has used the same password on all of them.

UNIX Implementation

Original scheme

- Up to eight printable characters in length
- 12-bit salt used to modify DES encryption into a one-way hash function
- Zero value repeatedly encrypted 25 times
- Output translated to 11 character sequence

Now regarded as inadequate

- The attack was able to process over 50 million password guesses in about 80 minutes
- Still often required for compatibility with existing account management software or multivendor environments

Improved Implementations

OpenBSD uses Blowfish block cipher based hash algorithm called Bcrypt

- Most secure version of Unix hash/salt scheme
- •Uses 128-bit salt to create 192-bit hash value
- Bcrypt includes a cost variable which causes a increase in the time required to perform a Bcyrpt
 hash.

Much stronger hash/salt schemes available for Unix

Recommended hash function is based on MD5

- •Salt of up to 48-bits
- Password length is unlimited
- Produces 128-bit hash
- •Uses an inner loop with 1000 iterations
- to achieve slowdown

Password Cracking

Dictionary attacks

- Develop a large dictionary of possible passwords and try each against the password file
- Each password must be hashed using each salt value and then compared to stored hash values

Rainbow table attacks

- Pre-compute tables of hash values for all salts
- A mammoth table of hash values
- Can be countered by using a sufficiently large salt value and a sufficiently large hash length

Password crackers exploit the fact that people choose easily guessable passwords

• Shorter password lengths are also easier to crack

John the Ripper

- Open-source password cracker first developed in in 1996
- Uses a combination of brute-force and dictionary techniques

Modern Approaches

Complex password policy

Forcing users to pick stronger passwords

However password-cracking techniques have also improved

- The processing capacity available for password cracking has increased dramatically
- The use of sophisticated algorithms to generate potential passwords
- Studying examples and structures of actual passwords in use

- An analysis of the passwords used by over 25,000 students at a research university with a complex password policy
- They used a database consisting of a collection of leaked password files, including the RockYou file
- The graph shows the percentage of passwords that have been recovered as a function of the number of guesses
- Over 10% of the passwords are recovered after only 10¹⁰ guesses. After 10¹³ guesses, almost 40% of the passwords are recovered

Password File Access Control

Can block offline guessing attacks by denying access to encrypted passwords

Password Selection Strategies

User education

Users can be told the importance of using hard to guess passwords and can be provided with guidelines for selecting strong passwords

Computer generated passwords

Users have trouble remembering them

Reactive password checking

System periodically runs its own password cracker to find guessable passwords

Complex password policy

User is allowed to select their own password, however the system checks to see if the password is allowable, and if not, rejects it

Goal is to eliminate guessable passwords while allowing the user to select a password that is memorable

Proactive Password Checking

Rule enforcement

Specific rules that passwords must adhere to

Password checker

Compile a large dictionary of passwords not to use

Bloom filter

- Used to build a table based on hash values
- Check desired password against this table

Types of Cards Used as Tokens

Card Type	Defining Feature	Example	
Embossed	Raised characters only, on front	Old credit card	
Magnetic stripe	Magnetic bar on back, characters on front	Bank card	
Memory	Electronic memory inside	Prepaid phone card	
Smart	Electronic memory and processor inside	Biometric ID card	
Contact	Electrical contacts exposed on surface		
Contactless	Radio antenna embedded inside		

Memory Cards

- Can store but do not process data
- The most common is the magnetic stripe card
- Can include an internal electronic memory
- Can be used alone for physical access
 - o Hotel room
 - o ATM
- Provides significantly greater security when combined with a password or PIN
- Drawbacks of memory cards include:
 - o Requires a special reader
 - o Loss of token
 - o User dissatisfaction

Smart Tokens

- Physical characteristics:
 - o Include an embedded microprocessor
 - o A smart token that looks like a bank card
 - o Can look like calculators, keys, small portable objects
- User interface:
 - Manual interfaces include a keypad and display for human/token interaction
- Electronic interface
 - A smart card or other token requires an electronic interface to communicate with a compatible reader/writer
 Contact and contactloss interfaces
 - Contact and contactless interfaces
- Authentication protocol:
 - Classified into three categories:
 - Static
 - Dynamic password generator
 - Challenge-response

Smart Cards

• Most important category of smart token

- Has the appearance of a credit card
- Has an electronic interface
- May use any of the smart token protocols

• Contain:

- An entire microprocessor
 - Processor
 - Memory
 - I/O ports

• Typically include three types of memory:

- Read-only memory (ROM)
 - Stores data that does not change during the card's life
- Electrically erasable programmable ROM (EEPROM)
 - Holds application data and programs
- Random access memory (RAM)
 - Holds temporary data generated when applications are executed

Smart card

Card reader

APDU = application protocol data unit ATR = Answer to reset PTS = Protocol type selection

Figure 3.6 Smart Card/Reader Exchange

Electronic Identity Cards (eID)

Use of a smart card as a national identity card for citizens

Can serve the same purposes as other national ID cards, and similar cards such as a driver's license, for access to government and commercial services

Can provide stronger proof of identity and can be used in a wider variety of applications

In effect, is a smart card that has been verified by the national government as valid and authentic Most advanced deployment is the German card *neuer Personalausweis*

Has human-readable data printed on its surface

- Personal data
- Document number
- Card access number (CAN)
- Machine readable zone (MRZ)

Function	Purpose	PACE Password	Data	Uses	
ePass (mandatory)	Authorized offline inspection systems read the data	CAN or MRZ	Face image; two fingerprint images (optional), MRZ data	Offline biometric identity verification reserved for government access	
eID (activation optional	Online applications read the data or acess functions as authorized	eID PIN	Family and given names; artistic name and doctoral degree:	Identification; age verification; community ID verification; restricted identification (pseudonym); revocation query	
	Offline inspection systems read the data and update the address and community ID	CAN or MRZ	date and place of birth; address and community ID; expiration date		
eSign (certificate optional	A certification authority installs the signature certificate online	eID PIN	Signature key;	Electronic signature creation	
	Citizens make electronic signature with eSign PIN	CAN	X.509 certificate		

Electronic Functions and Data for eID Cards

CAN = card access number

MRZ = machine readable zone

PACE = password authenticated connection establishment

PIN = personal identification number

Figure 3.7 User Authentication with eID

Password Authenticated Connection Establishment (PACE)

Ensures that the contactless RF chip in the eID card cannot be read without explicit access control For online applications, access is established by the user entering the 6digit PIN (which should only be known to the holder of the card) For offline applications, either the MRZ printed on the back of the card or the six-digit card access number (CAN) printed on the front is used

Biometric Authentication

- Attempts to authenticate an individual based on unique physical characteristics
- Based on pattern recognition
- Is technically complex and expensive when compared to passwords and tokens
- Physical characteristics used include:
 - Facial characteristics
 - Fingerprints
 - Hand geometry
 - Retinal pattern
 - \circ Iris
 - Signature
 - o Voice

Accuracy

Figure 3.8 Cost Versus Accuracy of Various Biometric Characteristics in User Authentication Schemes.

Probability density function

Figure 3.10 Profiles of a Biometric Characteristic of an Imposter and an Authorized Users In this depiction, the comparison between presented feature and a reference feature is reduced to a single numeric value. If the input value (s) is greater than a preassigned threshold (t), a match is declared.

Figure 3.11 Idealized Biometric Measurement Operating Characteristic Curves (log-log scale)

Figure 3.12 Actual Biometric Measurement Operating Characteristic Curves, reported in [MANS01]. To clarify differences among systems, a log-log scale is used.

Remote User Authentication

- Authentication over a network, the Internet, or a communications link is more complex
- Additional security threats such as:
 - Eavesdropping, capturing a password, replaying an authentication sequence that has been observed
- Generally rely on some form of a challengeresponse protocol to counter threats

Attacks	Authenticators	Examples	Typical defenses	
Client attack	Password	Guessing, exhaustive search	Large entropy; limited attempts	
	Token	Exhaustive search	Large entropy; limited attempts, theft of object requires presence	
	Biometric	False match	Large entropy; limited attempts	
Host attack	Password	Plaintext theft, dictionary/exhaustive search	Hashing; large entropy; protection of password database	
	Token	Passcode theft	Same as password; 1-time passcode	
	Biometric	Template theft	Capture device authentication; challenge response	
Eavesdropping, theft, and copying	Password	"Shoulder surfing"	User diligence to keep secret; administrator diligence to quickly revoke compromised passwords; multifactor authentication	
	Token	Theft, counterfeiting hardware	Multifactor authentication; tamper resistant/evident token	
	Biometric	Copying (spoofing) biometric	Copy detection at capture device and capture device authentication	
Replay	Password	Replay stolen password response	Challenge-response protocol	
	Token	Replay stolen passcode response	Challenge-response protocol; 1-time passcode	
	Biometric	Replay stolen biometric template response	Copy detection at capture device and capture device authentication via challenge-response protocol	
Trojan horse	Password, token, biometric	Installation of rogue client or capture device	Authentication of client or capture device within trusted security perimeter	
Denial of service	Password, token, biometric	Lockout by multiple failed authentications	Multifactor with token	

Some Potential Attacks, Susceptible Authenticators, and Typical Defenses

Figure 3.14 General Iris Scan Site Architecture for UAE System

(b) Shared connection to processor

Figure 3.15 ATM Architectures. Most small to mid-sized issuers of debit cards contract processors to provide core data processing and electronic funds transfer (EFT) services. The bank's ATM machine may link directly to the processor or to the bank.

Case Study: ATM Security Problems

Denial-of-Service

Attempts to disable a user authentication service by flooding the service with numerous authentication attempts

Eavesdropping

Adversary attempts to learn the password by some sort of attack that involves the physical proximity of user and adversary

AUTHENTICATION SECURITY ISSUES

Trojan Horse An application or physical device masquerades as an authentic application or device for the purpose of capturing a user password, passcode, or biometric

Client Attacks

Adversary attempts to achieve user authentication without access to the remote host or the intervening communications path

Host Attacks

Directed at the user file at the host where passwords, token passcodes, or biometric templates are stored

Replay

Adversary repeats a previously captured user response