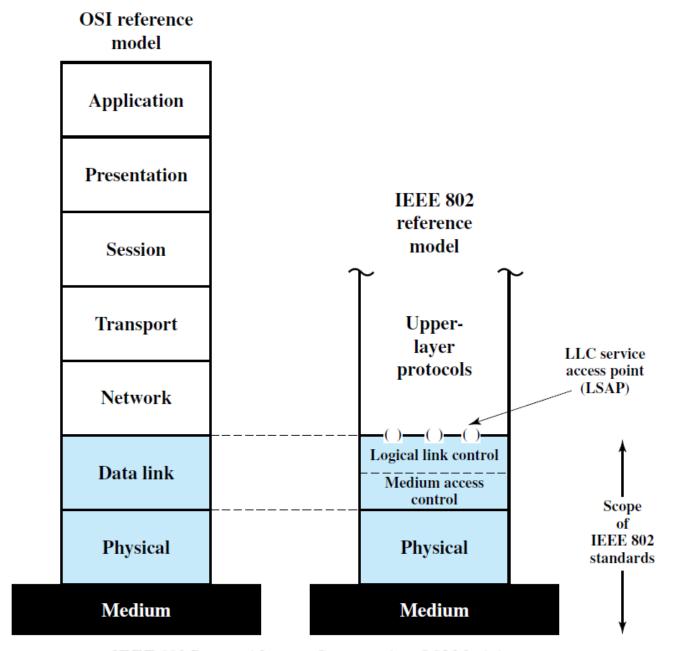
Fahad Yassir AL — Bazzaz

M.sc Student

Student No: 15501064

2016

The basic functions of a LAN is organized by set of layering protocols.


#### > IEEE 802 Reference Model

Protocols defined specifically for LAN and MAN transmission address issues relating to the transmission of blocks of data over the network

➤ In **OSI** (Open System Interconnection), higher layer protocols (layer 3 or 4 and above) are independent of network architecture and are applicable to LANs, MANs, and WANs.

- ➤ A discussion of LAN protocols is concerned principally with lower layers of the OSI model.
- This architecture was developed by the IEEE 802 LAN standards committee
- ➤ It is generally referred to as the IEEE 802 reference model.

- ➤ Working from the bottom up, the lowest layer of the IEEE 802 reference model corresponds to the **physical** layer of the OSI model and includes such functions as :
- Encoding / decoding of signals
- Preamble generation/removal
- Bit transmission / reception
- ➤ In addition, the physical layer of the 802 model includes a specification of the transmission medium and the topology.



IEEE 802 Protocol Layers Compared to OSI Model

- ➤ Above the physical layer are the functions associated with providing service to LAN users. These include the following:
- 1. On transmission, assemble data into a frame with address and error-detection fields.
- 2. On reception, disassemble frame and perform address recognition and error detection.
- 3. Govern access to the LAN transmission medium.
- 4. Provide an interface to higher layers and perform flow and error control.
- These are functions typically associated with OSI layer 2 (Data Link Layer).

- The set of functions in the last point are grouped into a **logical link control (LLC) layer.**
- The functions in the first three points are treated as a separate layer, called **medium access control** (MAC).
- **The separation** is done for the following reasons:
- 1. The logic required to manage access to a shared access medium is not found in traditional layer 2 data link layer.
- 2. For the same LLC, several MAC options may be provided.

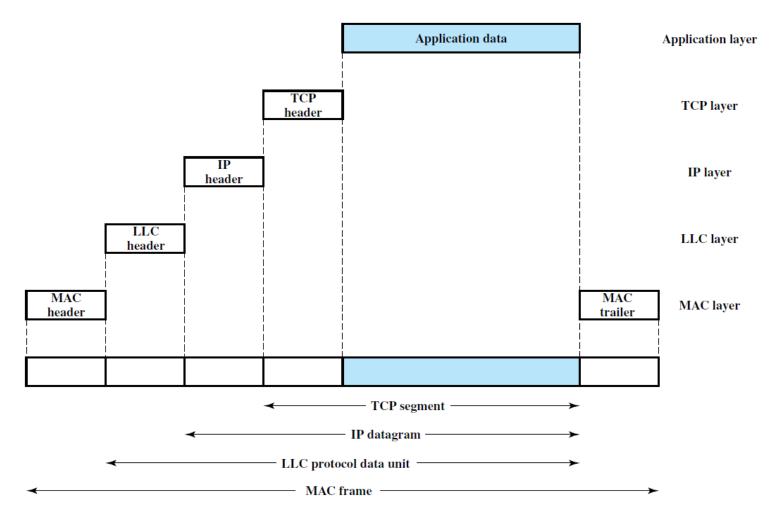
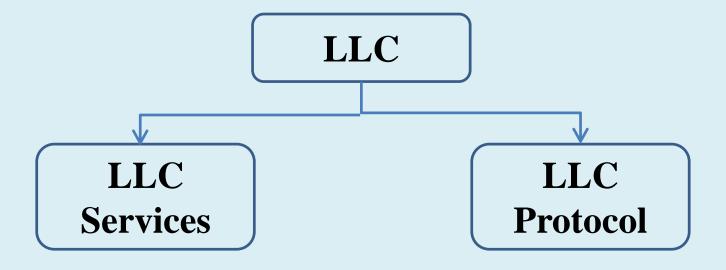




Figure illustrates the relationship between the levels of the architecture

## **Logical Link Control (LLC)**

- > Its main function :
  - ✓ Interface to higher levels.
  - ✓ Flow and error control.
- LLC is concerned with the transmission of a link-level PDU.
- > Must support multi-access, shared-medium.
- Relieved of some link access details by MAC layer.

- ➤ Addressing in LLC involves specifying the source and destination LLC users :
  - \*Referred to as service access points (SAPs).
  - Typically higher level protocols.



#### **LLC Services:**

- The operation and format of this standard is based on **HDLC** (High-level Data Link Control).
- Three services are provided as using LLC:
  - 1. Unacknowledged connectionless service.
  - 2. Connection-mode service.
  - 3. Acknowledged connectionless service.

#### **LLC Protocol:**

- The basic LLC protocol is modeled after **HDLC** and has similar functions and formats.
- The differences between the two protocols can summarized as:
  - 1. Asynchronous balanced mode to support connection mode LLC service (Type 2).
  - 2. Unnumbered information PDUs to support acknowledged connectionless service (Type 1).
  - 3. Multiplexing using LLC service access points (LSAPs).

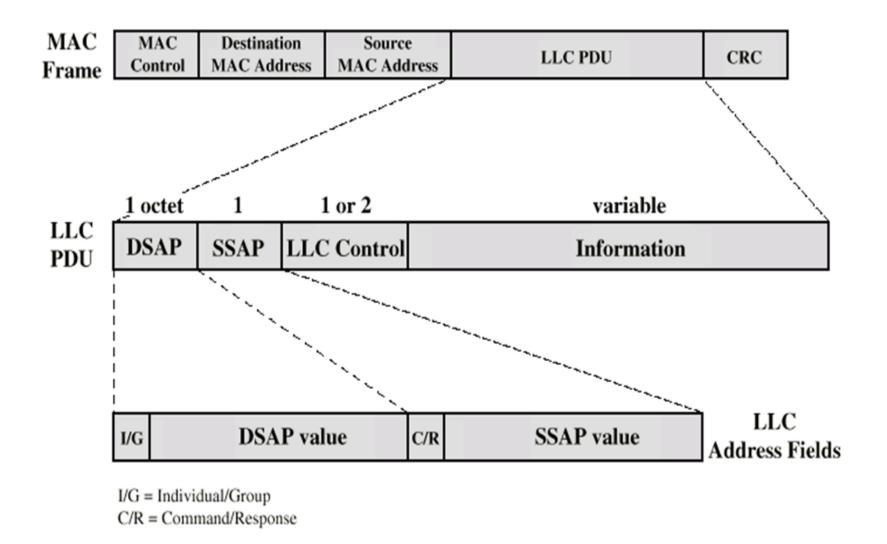



Figure: LLC PDU in a generic MAC Frame Format

- > Medium Access Control
- Controlling access to the transmission medium by providing an orderly and efficient use of the transmission capacity.

The key parameters in any medium access control technique are **where** and **how** 

#### > Where

- **□** Central
  - ✓ Greater control.
  - ✓ Simple access logic at station .
  - ✓ Avoids problems of co-ordination .
  - ✓ Single point of failure.
  - ✓ Potential bottleneck.
- **☐** Distributed
- > How
  - **□** Synchronous
    - ✓ Specific capacity dedicated to connection .
  - **□** Asynchronous
    - ✓ In response to demand.

## Asynchronous systems

#### > Round robin

✓ Good if many stations have data to transmit over extended period.

#### > Reservation

✓ Good for stream traffic.

#### **Contention**

- ✓ Good for bursty traffic.
- ✓ All stations contend for time.
- ✓ Distributed.
- ✓ Simple to implement.
- ✓ Efficient under moderate load.
- ✓ Tend to collapse under heavy load.

- ➤ MAC layer receives data from LLC layer.
- > MAC layer detect errors and discards frames.
- > LLC optionally retransmits unsuccessful frames.
- > MAC frame format
  - MAC control
  - Destination MAC address.
  - Source MAC address.
  - LLC
  - CRC

## **Summary**

- ➤ In most data link control protocols, the data link protocol entity is responsible not only for detecting errors using the CRC, but for recovering from those errors by retransmitting damaged frames.
- In the LAN protocol architecture, these two functions are split between the MAC and LLC layers.
- 1. The MAC layer is responsible for detecting errors and discarding any frames that are in error.
- 2. The LLC layer optionally keeps track of which frames have been successfully received and retransmits unsuccessful frames.

# EKNIKÜNIU Thank You 1911

## ÖNEMLİ

Bu projeler lisansüstü öğrencilerinin hazırladığı çalışmalar olup tüm sorumluluk hazırlayan öğrencilere aittir. Öğrenciler hazırladığı projeye göre not almışlardır.