
BLM6196 COMPUTER

NETWORKS AND

COMMUNICATION

PROTOCOLS

Prof. Dr. Hasan Hüseyin BALIK

(4th Week)

4. Transport Protocols

4.Outline

• Connection-Oriented Transport Protocol
Mechanisms

• TCP

• UDP

Connection-Oriented

Transport Mechanisms

 Two basic types of transport service:

Connection-oriented

• Establishment, maintenance and termination
of a logical connection between TS users

• Has a wide variety of applications

• Most common

• Implies service is reliable

Connectionless or datagram service

Reliable Sequencing

Network Service

 Issues:
Addressing

Multiplexing

Flow control

Connection establishment/termination

Addressing

 Transport protocol must be able to derive

the following information from the TS user

address:

 User identification

 Transport entity identification

 Host address

 Network number

Multiplexing

 Multiple users employ the same transport

protocol and are distinguished by port

numbers or service access points

Upward multiplexing

• Multiplexing of multiple
connections on a single lower-
level connection

Downward multiplexing

• Splitting of a single connection
among multiple lower-level
connections

Flow Control

 Complex at the transport layer:

 Considerable delay in the communication of
flow control information

 Amount of the transmission delay may be
highly variable, making it difficult to effectively
use a timeout mechanism for retransmission
of lost data

Reasons for control:

User of the receiving
transport entity cannot
keep up with the flow

Receiving transport entity
itself cannot keep up with

the flow of segments

Alternatives to Flow Control

Requirements

Do nothing

• Segments that overflow the
buffer are discarded

• Sending transport entity will
retransmit

Refuse to accept further
segments from the network
service

• Relies on network service to do
the work

Use a fixed sliding window
protocol

• With a reliable network service
this works quite well

Use a credit scheme

• A more effective scheme to use
with an unreliable network
service

Receiving
transport entity

can:

A may send 1400 octets

A shrinks its transmit window with each

transmission

B is prepared to receive 1400 octets,

beginning with 1001

B acknowledges 3 segments (600 octets), but is only

prepared to receive 200 additional octets beyond the

original budget (i.e., B will accept octets 1601

through 2600)

B acknowledges 5 segments (1000 octets) and

restores the original amount of credit

A adjusts its window with each credit

A exhausts its credit

A receives new credit

SN = 1001

SN = 1201

SN = 1401

SN = 1601SN = 1801

SN = 2001

SN = 2201

SN = 2401

AN = 1601,W
 = 1000

AN = 2601,W = 1400

Transport Entity A Transport Entity B

Figure 15.1 Example of TCP Credit Allocation Mechanism

...1000 1001 2400 2401... ...1000 1001 2400 2401...

...2600 2601 4000 4001...

...2600 2601 4000 4001...

...1000 1001 1601 2401...

...1000 1001 2001 2401...

...1600 1601 2001 2601...

...1600 1601 2601...

...1600 1601 2001 2601...

...1600 1601 2600 2601...

Connection Establishment

and Termination

 Serves three main purposes:

 Allows each end to assure that the other

exists

 Allows exchange or negotiation of optional

parameters

 Triggers allocation of transport

entity resources

 Is by mutual agreement

CLOSED

SYN SENT LISTEN

ESTAB

FIN WAIT CLOSE WAIT

CLOSED

Active Open

send SYN

Event

Action

Receive SYN

Send SYN

Close

Send FIN

Close

Send FIN

Close Close

Passive Open

Receive SYN

Receive FIN

Receive FIN

Figure 15.3 Simple Connection State Diagram

State

Legend:

SYN

SYN

System A

State/(Command)

System B

State/(Command)

(Passive Open)

CLOSED

SYN SENT

System A

State/(Command)

System B

State/(Command)

CLOSED

SYN SENT

(Active Open)

ESTAB

CLOSED

(Active Open)

SYN SENT

ESTAB

(Active Open)

ESTAB

LISTEN

CLOSED

ESTAB

SYN
SYN

(a) Active/Passive Open (b) Active/Active Open

Figure 15.4 Connection Establishment Scenarios

Unreliable Network Service

 Segments are occasionally lost and may

arrive out of sequence due to variable

transit delays

Examples:

• Internetwork using IP

• Frame relay network using only
the LAPF core protocol

• IEEE 802.3 LAN using the
unacknowledged connectionless
LLC service

Issues to Address

Ordered delivery

Retransmission strategy

Duplicate detection

Flow control

Connection establishment

Connection termination

Failure recovery

Ordered Delivery

 With an unreliable network service it is

possible that segments may arrive out of

order

 Solution to this problem is to number

segments sequentially

 TCP uses scheme where each data octet is

implicitly numbered

Retransmission Strategy

 Events necessitating retransmission:

 Sending transport does not know

transmission was unsuccessful

 Receiver acknowledges successful receipt

by returning a segment containing an

acknowledgment number
Cont.

Segment may be
damaged in transit
but still arrives at

its destination

Segment fails to
arrive

Retransmission Strategy

 No acknowledgment will be issued if a

segment does not arrive successfully

 Resulting in a retransmit

 A timer needs to be associated with each

segment as it is sent

 If timer expires before acknowledgment

is received, sender must retransmit

Transport Protocol Timers

Retransmission timer Retransmit an unacknowledged segment

MSL (maximum segment

lifetime) timer

Minimum time between closing one connection and opening

another with the same destination address

Persist timer Maximum time between ACK/CREDIT segments

Retransmit-SYN timer Time between attempts to open a connection

Keepalive timer Abort connection when no segments are received

Duplicate Detection

 Receiver must be able to recognize
duplicates

 Segment sequence numbers help

 Complications arise if:

 A duplicate is received prior to the close of the
connection
• Sender must not get confused if it receives multiple

acknowledgments to the same segment

• Sequence number space must be long enough

 A duplicate is received after the close of the
connection

Transport

Entity A

Transport

Entity B

Figure 15.5 Example of Incorrect Duplicate Detection

A times out and

retransmits SN = 201

Obsolete SN = 1

arrives

A times out and

retransmits SN = 1

AN = 601, W = 600

AN = 601, W = 600

AN = 801, W = 600

AN = 1001, W = 600

AN = 1201, W = 600

AN = 1401, W = 600

AN = 1, W = 600

AN = 201, W = 600

SN = 201

SN = 401

SN = 1

SN = 201

SN = 601

SN = 801

SN = 1001

SN = 1201

SN = 1401

SN = 1

S
N

 =
 1

Flow Control

 Future acknowledgments will

resynchronize the protocol if an

ACK/CREDIT segment is lost

 If no new acknowledgments are

forthcoming the sender times out and

retransmits a data segment which triggers

a new acknowledgment

 Still possible for deadlock to occur

Connection Establishment

 Must take into account the unreliability of a

network service

 Calls for the exchange of SYNs (two way

handshake)

 Could result in:

• Duplicate SYNs

• Duplicate data segments

SYN

SN = 1

SN = 201

SYN

SYN

SN = 1

SN = 201

SN = 401

SYN

A initiates a connection

New connection opened

A begins transmission

B accepts and acknowledges

Connection closed

Obsolete segment SN = 401 is accepted;

valid segment SN = 401 is discarded as duplicate

Figure 15.6 The Two-Way Handshake: Problem with Obsolete Data Segment

S
N

 =
 4

0
1

A B

SYN i

SYN jSYN k

SN = k + 1

A B

Obsolete SYN i arrives

Connection closed

B responds; A sends new SYN

B discards duplicate SYN

B rejects segment as out of sequence

Figure 15.7 Two-Way Handshake: Problem with Obsolete SYN Segments

SYN i

SYN i

RST, AN = k

SN i + 1, AN = j + 1

SN = i + 1, AN = j + 1

SYN j, AN = i + 1

(a) Normal operation

A initiates a connection

A initiates a connection

Old SYN arrives at A; A rejects

A acknowledges and begins transmission

A acknowledges and begins transmission

B accepts and acknowledges

SYN i

RST, AN = j

SYN j, AN = i + 1

(b) Delayed SYN

(c) Delayed SYN, ACK

Obsolete SYN arrives

A rejects B's connection

B accepts and acknowledges

B accepts and acknowledges

SYN k, A
N = p

SYN j,
AN = i +

 1

Figure 15.9 Examples of Three-Way Handshake

A B

Connection Termination

 Two-way handshake was found to be
inadequate for an unreliable
network service

 Out of order segments could cause the FIN
segment to arrive before the last data segment

• To avoid this problem the next sequence number
after the last octet of data can be assigned to FIN

• Each side must explicitly acknowledge the FIN of
the other using an ACK with the sequence number
of the FIN to be acknowledged

Failure Recovery

 When the system that the transport entity

is running on fails and subsequently

restarts, the state information of all active

connections is lost

 Affected connections become half open

because the side that did not fail does not

realize the problem

• Still active side of a half-open connection can close

the connection using a keepalive timer

Cont…

Failure Recovery

 In the event that a transport entity fails and

quickly restarts, half-open connections can

be terminated more quickly by the the use

of the RST segment

• Failed side returns an RST i to every segment

i that it receives

• RST i must be checked for validity on the

other side

• If valid an abnormal termination occurs

 There is still the chance that some user

data will be lost or duplicated

TCP Services

 RFC 793

 Defined in terms of primitives and

parameters

TCP labels data as:

• Data stream Push

• Urgent data signaling

TCP Service Request Primitives

Primitive Parameters Description

Unspecified

Passive Open

source-port, [timeout], [timeout-

action], [precedence], [security-

range]

Listen for connection attempt at

specified security and precedence

from any remote destination.

Fully Specified

Passive Open

source-port, destination-port,

destination-address, [timeout],
[timeout-action], [precedence],

[security-range]

Listen for connection attempt at

specified security and precedence
from specified destination.

Active Open source-port, destination-port,

destination-address, [timeout],

[timeout-action], [precedence],

[security]

Request connection at a particular

security and precedence to a

specified destination.

Active Open with
Data

source-port, destination-port,
destination-address, [timeout],

[timeout-action], [precedence],

[security], data, data-length, PUSH-

flag, URGENT-flag

Request connection at a particular
security and precedence to a

specified destination and transmit

data with the request.

Send local-connection-name, data, data-

length, PUSH-flag, URGENT-flag,

[timeout], [timeout-action]

Transfer data across named

connection.

Allocate local-connection-name, data-length Issue incremental allocation for

receive data to TCP.

Close local-connection-name Close connection gracefully.

Abort local-connection-name Close connection abruptly.

Status local-connection-name Query connection status.

TCP Service Response Primitives

Primitive Parameters Description

Open ID local-connection-name, source-port,

destination-port*, destination-address*,

Informs TCP user of connection

name assigned to pending

connection requested in an Open

primitive

Open Failure local-connection-name Reports failure of an Active Open
request

Open Success local-connection-name Reports completion of pending

Open request

Deliver local-connection-name, data, data-length,

URGENT-flag

Reports arrival of data

Closing local-connection-name Reports that remote TCP user has

issued a Close and that all data sent
by remote user has been delivered

Terminate local-connection-name, description Reports that the connection has

been terminated; a description of

the reason for termination is

provided

Status

Response

local-connection-name, source-port,

source-address, destination-port,
destination-address, connection-state,

receive-window, send-window, amount-

awaiting-ACK, amount-awaiting-receipt,

urgent-state, precedence, security, timeout

Reports current status of

connection

Error local-connection-name, description Reports service-request or internal

error

TCP

Service

Parameters

Source Port Local TCP user

Timeout Longest delay allowed for data delivery before automatic connection

termination or error report; user specified

Timeout-action Indicates whether the connection is terminated or an error is reported to
the TCP user in the event of a timeout

Precedence Precedence level for a connection. Takes on values zero (lowest) through
seven (highest); same parameter as defined for IP

Security-range Allowed ranges in compartment, handling restrictions, transmission

control codes, and security levels

Destination Port Remote TCP user

Destination Address Internet address of remote host

Security Security information for a connection, including security level,

compartment, handling restrictions, and transmission control code; same
parameter as defined for IP

Data Block of data sent by TCP user or delivered to a TCP user

Data Length Length of block of data sent or delivered

PUSH flag If set, indicates that the associated data are to be provided with the data

stream push service

URGENT flag If set, indicates that the associated data are to be provided with the urgent

data signaling service

Local Connection Name Identifier of a connection defined by a (local socket, remote socket) pair;

provided by TCP

Description Supplementary information in a Terminate or Error primitive

Source Address Internet address of the local host

Connection State State of referenced connection (CLOSED, ACTIVE OPEN, PASSIVE

OPEN, ESTABLISHED, CLOSING)

Receive Window Amount of data in octets the local TCP entity is willing to receive

Send Window Amount of data in octets permitted to be sent to remote TCP entity

Amount Awaiting ACK Amount of previously transmitted data awaiting acknowledgment

Amount Awaiting Receipt Amount of data in octets buffered at local TCP entity pending receipt by
local TCP user

Urgent State Indicates to the receiving TCP user whether there are urgent data available

or whether all urgent data, if any, have been delivered to the user

Source Port Destination Port

Checksum Urgent Pointer

Sequence Number

Acknowledgment Number

Options + Padding

Reserved Window
Data

offset

0Bit: 4 8 16 31
2

0
 o

c
te

ts

Figure 15.10 TCP Header

U

R

G

A

C

K

P

S

H

R

S

T

S

Y

N

F

I

N

E

C

E

C

W

R

TCP Mechanisms

 Can be grouped into:

Connection
establishment

• Always uses a
three-way
handshake

• Connection is
determined by host
and port

Data transfer

• Viewed logically as
consisting of a
stream of octets

• Flow control is
exercised using
credit allocation

Connection
termination

• Each TCP user
must issue a
CLOSE primitive

• An abrupt
termination occurs if
the user issues an
ABORT primitive

TCP Implementation

Policy Options

 Implementation opportunities:

Send policy

Deliver policy

Accept policy

Retransmit policy

Acknowledge policy

Send Policy

 In the absence of both pushed data and a closed

transmission window a sending TCP entity is free to

transmit data at its own convenience

 TCP may construct a segment for each batch of

data provided or it may wait until a certain amount of

data accumulates before constructing and sending a

segment

 Infrequent and large transmissions have low

overhead in terms of segment generation and

processing

 If transmissions are frequent and small, the system

is providing quick response

Deliver Policy

 In the absence of a Push, a receiving TCP entity

is free to deliver data to the user at its own

convenience

 May deliver as each in-order segment is

received, or may buffer data before delivery

 If deliveries are infrequent and large, the user is

not receiving data as promptly as may be

desirable

 If deliveries are frequent and small, there may

be unnecessary processing, as well as operating

system interrupts

Accept Policy

 If segments arrive out of order the receiving TCP

entity has two options:

• Accepts only segments that arrive in order; any segment that
arrives out of order is discarded

• Makes for simple implementation but places a burden on the
networking facility

• If a single segment is lost in transit, then all subsequent
segments must be retransmitted

In-order

• Accepts all segments that are within the receive window

• Requires a more complex acceptance test and a more
sophisticated data storage scheme

In-window

Retransmit Policy

 Retransmission strategies:

First-only

• Maintain one retransmission timer for
entire queue

• Efficient in terms of traffic generated

• Can have considerable delays

Batch

• Maintain one retransmission timer for
entire queue

• Reduces the likelihood of long delays

• May result in unnecessary
retransmissions

Individual
• Maintain one timer for each segment in

the queue

• More complex implementation

Acknowledge Policy

 Timing of acknowledgment:

User Datagram Protocol

(UDP)

 Transport-level protocol that is commonly

used as part of the TCP/IP protocol suite

 RFC 768

 Provides a connectionless service for

application-level procedures

 Unreliable service; delivery and duplicate

protection are not guaranteed

 Reduces overhead and may be adequate

in many cases

Source Port Destination Port

Length Checksum

0Bit: 16 31

8
 o

ct
et

s

Figure 15.11 UDP Header

