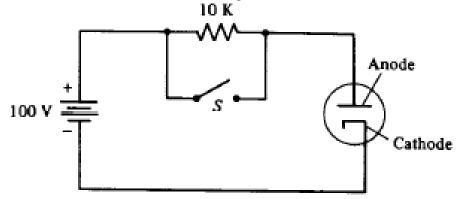
Name, Surname : AKAY KARA
Number : B1105.020020

Course Code : EEE321

Course Name : Electromagnetic Fields And Waves

Exam : Ouiz Sasignment

Date :08.12.2015



□ Final

QUESTION

A planar vacuum diode has a heated cathode at z = 0 [$\Phi(0) = 0$] and an anode at z = d [$\Phi(d) = V_0$]. If an electron escapes from the cathode with zero initial velocity, then the total initial energy is zero, and the total energy is constant and zero ($-e\Phi + mu^2/2 = 0$). It can then be shown that $\Phi(z) = V_0(z/d)^{4/3}$.

- (a) Find ρ_v(z).
- (b) Find J_z(z) (A/m²).
- (c) Show that $I = KV_0^{3/2}$ (Child-Langmuir or three-halves power law).
- (d) Find the time required for an electron to leave the cathode and reach the anode (transit time) if $V_0 = 100 \text{ V}$ and d = 1 mm.
- (e) If the current in Figure _ is 10 mA when the switch is closed, what is the current when the switch is open?

Name, Surname : ALPEREN TASBASI

Number : B1105.020015

Course Code : EEE321

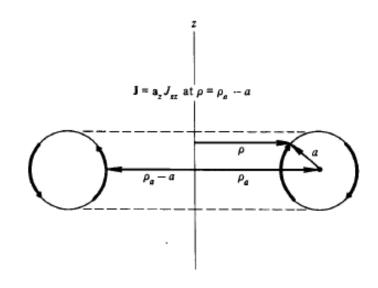
Course Name : Electromagnetic Fields And Waves

Exam :□ Quiz ⊗ Assignment □ Final

Date :08.12.2015

QUESTION

An *idealized toroid* can be thought of as a finite length solenoid bent around to close on itself to form a doughnut shape as shown in Figure The surface current density at $\rho = \rho_a - a$ is J_{sz} . It can be shown that


$$\mathbf{H} = \begin{cases} J_{sz} \frac{\rho_a - a}{\rho} \mathbf{a}_{\phi}, & \text{inside toroid;} \\ 0, & \text{outside toroid.} \end{cases}$$

Find $\oint \mathbf{H} \cdot d\mathbf{l}$ for a circular path of radius b in the z = 0 plane if

(a)
$$0 < b < \rho_a - a$$
,

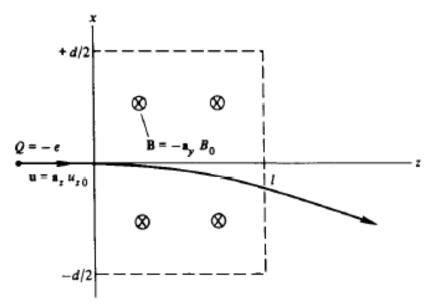
(b)
$$\rho_a - a < b < \rho_a + a$$
, and

(c)
$$b > \rho_a + a$$
.

Name, Surname : BAHAR DAŞ Number : B1205.020008

Course Code : EEE321

Course Name : Electromagnetic Fields And Waves


Date :08.12.2015

☐ Final

QUESTION

A uniform magnetic flux density $\mathbf{B} = -B_0 \mathbf{a}_y$ exists in the region, $-d/2 \le x \le d/2$, $0 \le z \le l$. Assume that there are no variations with y. An electron enters this field at (0,0,0) with an initial velocity $u_{z0}\mathbf{a}_z$ as shown in Figure . Find the equations of motion for the electron while in the applied field (magnetostatic deflection system).

Name, Surname : BARIŞ BERKAY BAYAZIT

Number : B1005.020021 Course Code : EEE321

Course Name : Electromagnetic Fields And Waves

Exam :□ Quiz ⊗ Assignment □ Final

Date :08.12.2015

QUESTION

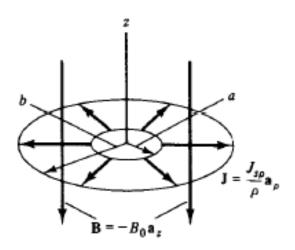
Find the force of repulsion per unit length between the two conductors of a planar transmission line. The two conductors are parallel plane strips, of width b and separation d, carrying equal and opposite surface currents. Assume $b \gg d$, and ignore fringing.

Name, Surname : BURAK YAPICI Number : B1205.020009

Course Code : EEE321

Course Name : Electromagnetic Fields And Waves

Exam :□ Quiz ⊗ Assignment □ Final


Date :08.12.2015

QUESTION

An idealized current density is given by $\mathbf{J} = \mathbf{a}_{\rho} J_{s\rho}/\rho$, $a \le \rho \le b$, z = 0, when a uniform external magnetic flux density $\mathbf{B} = -B_0 \mathbf{a}_z$ (Wb/m²) is applied. This is an *idealized axial gap motor*. See Figure .

- (a) Find the vector torque on the current if $J_{s\rho} = 10^3$ (A/m), a = 1 cm, b = 5 cm, and $B_0 = 1$ Wb/m².
- (b) If the armature rotates at 500 rpm, what power is provided?

Name, Surname : EGEMEN KÜÇÜK Number : B1205.020002

Course Code : EEE321

Course Name : Electromagnetic Fields And Waves

Exam :□ Quiz ⊗ Assignment □ Final

Date :08.12.2015

QUESTION

Region z > 0 has $\mu_R = 4$, while region z < 0 has $\mu_R = 1$. **B** is uniform for z > 0 with a magnitude of 1 Wb/m² and in a radial direction for which $\theta = 60^{\circ}$ and $\phi = 45^{\circ}$. Find **B** and **H** for z < 0.

Name, Surname : GÖKHAN ÇALIŞKAN

Number : B1205.020027 Course Code : EEE321

Course Name : Electromagnetic Fields And Waves

Exam : Quiz Sasignment

Date :08.12.2015

□ Final

QUESTION

An infinitely long cylinder of relative permeability μ_R and a radius a is placed so that its axis is the z axis in a magnetic field that was (in free space) previously uniform $\mathbf{H} = H_0 \mathbf{a}_x$.

- (a) List the boundary conditions on **H** in terms of Φ_m .
- (b) Find Φ_m. Use Laplace's equation.
- (c) Show that the field inside the cylinder is uniform.

Name, Surname : HAKAN KOÇER Number : B1305.020054

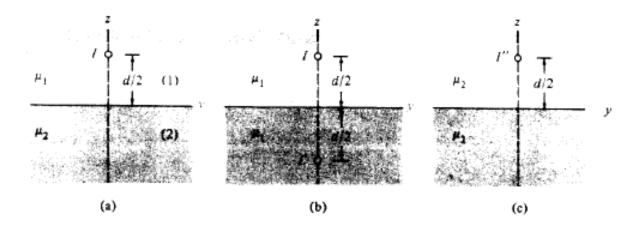
Course Code : EEE321

Course Name : Electromagnetic Fields And Waves

Exam : Ouiz Saignment

Date :08.12.2015

☐ Final


QUESTION

The differential equations and boundary conditions for Figure _. (a) are

$$\nabla^2 A_x = 0, \text{ except at } (x, 0, d/2);$$

$$H_{y1} = H_{y2}, \quad z = 0; \qquad \mu_1 H_{z1} = \mu_2 H_{z2}, \quad z = 0.$$

Show that this problem is equivalent to that in Figure (b) for z > 0 (only) if $I' = I(\mu_2 - \mu_1)/(\mu_2 + \mu_1)$, and that this problem is equivalent to that in Figure (c) for z < 0 (only) if $I'' = I(2\mu_1)/(\mu_2 + \mu_1)$.

Name, Surname

: HIRA JANAT

Number

: B1305.020084

Course Code

: EEE321

Course Name

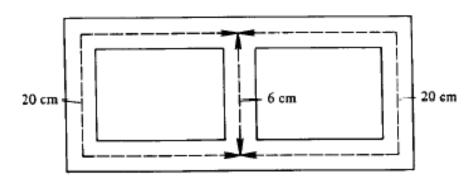
: Electromagnetic Fields And Waves

Exam

:□ Ouiz

⊗ Assignment

□ Final


Date

:08.12.2015

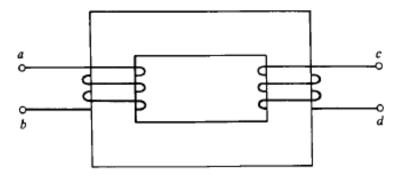
A magnetic core is shown in Figure . The mean lengths are as shown and the cross-sectional area is 4 cm^2 everywhere. If H = 500B, and a 1000-turn coil carrying 50 mA is placed on the left leg, find

- (a) B in each leg.
- (b) The inductance of the coil.
- (c) Repeat (a) and (b) if a 0.1 mm air gap is cut in the center leg.

Name, Surname : KEMAL KÖKSAL Number : B1305.020090

Course Code : EEE321

Course Name : Electromagnetic Fields And Waves


Exam : \square Quiz \otimes Assignment \square Final

Date :08.12.2015

QUESTION

If a convention is adopted whereby a dot is placed at a terminal of each of the windings where an *entering* current produces a flux that is *adding* to the flux being produced by the other winding, where should the dots be placed for the transformer in Figure ?

Name, Surname : KORAY YILDIZ Number : B1205.020018

Course Code : EEE321

Course Name : Electromagnetic Fields And Waves

Exam : \square Quiz \otimes Assignment \square Final

Date :08.12.2015

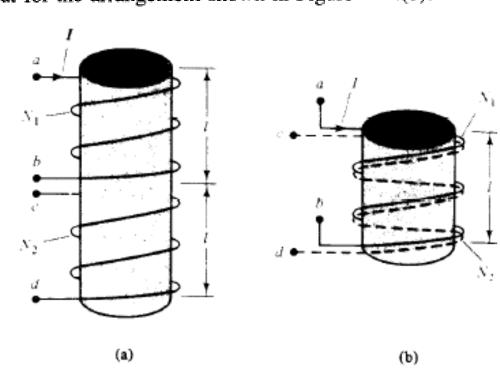
QUESTION

A transmission line is often fabricated as stripline. Assume that it consists of a thin strip of width 2 cm and spaced 0.25 cm from a large ground plane with a solid dielectric ($\varepsilon_R = 4$) between the two. Ignoring fringing of the field find the capacitance per unit length.

Name, Surname : METE NUYAN Number : B1205.020030

Course Code : EEE321

Course Name : Electromagnetic Fields And Waves


Exam :□ Quiz ⊗ Assignment

Date :08.12.2015

□ Final

QUESTION

Name, Surname : MEVLÜT EKİCİ Number : B1005.020006

Course Code : EEE321

Course Name : Electromagnetic Fields And Waves

Exam :□ Quiz ⊗ Assignment

Date :08.12.2015

☐ Final

QUESTION

A cylindrical washer has inner and outer radii a and b, respectively. Its conductivity is σ and its thickness is t. Find the resistance between:

- (a) Inner and outer radii.
- (b) The flat sides.
- (c) The sides of a very thin radial cut all the way through the material.

Name, Surname : MURAT FURUNCU

Number : B1305.020061

Course Code : EEE321

Course Name : Electromagnetic Fields And Waves

Exam :□ Quiz ⊗ Assignment □ Final

Date :08.12.2015

QUESTION

A parallel-plate capacitor is charged to V_0 volts and the battery is disconnected. The solid dielectric is then removed. What is the new potential difference between the plates.

Name, Surname : ONUR KÖKTAŞ Number : B1305.020062

Course Code : EEE321

Course Name : Electromagnetic Fields And Waves

Exam :□ Quiz ⊗ Assignment □ Final

Date :08.12.2015

QUESTION

A parallel-plate capacitor has plates of area 10^{-2} m² spaced by 10^{-2} m. The relative permittivity varies as $\varepsilon_R(z) = 1 + (z/d)^2$ when the lower plate is located at z = 0 and the upper plate is located at z = d. Find the capacitance.

Name, Surname : ORKUN ÇEKEN Number : B1205.020019

Course Code : EEE321

Course Name : Electromagnetic Fields And Waves

Exam :□ Quiz ⊗ Assignment

Date :08.12.2015

☐ Final

QUESTION

Find the capacitance per unit length of the two-dielectric coaxial capacitor shown in Figure .

Name, Surname : ÖMER FARUK ATAYETER

Number : B1405.020100

Course Code : EEE321

Course Name : Electromagnetic Fields And Waves

Exam :□ Quiz ⊗ Assignment □ Final

Date :08.12.2015

QUESTION

What is the resistance per 100 m for a circular conductor that is steel for $0 \le \rho \le 10^{-2}$ and aluminum for $10^{-2} \le \rho \le 2 \times 10^{-2}$? Assume uniform current densities. Use $\sigma = 0.2 \times 10^7$ for steel. What is the "effective" conductivity of this conductor?

Name, Surname : ÖMER YUSUF AKYÜZ

Number : B1205.020016

Course Code : EEE321

Course Name : Electromagnetic Fields And Waves

Exam : \square Quiz \otimes Assignment \square Final

Date :08.12.2015

QUESTION

It is possible to construct an electric circuit with a pencil and a piece of paper. Assuming that graphite has a conductivity of $7 \times 10^4 \, \text{T/m}$, how "thick" would a 1-k Ω resistor be if it is 2 cm long and 1 mm wide?

Name, Surname : SAMİ ONUR YAVUZ

Number : B1205.020105 Course Code : EEE321

Course Name : Electromagnetic Fields And Waves

Exam : Ouiz Saignment Saignment

Date :08.12.2015

□ Final

QUESTION

Certain junction diodes, called *varactor diodes*, behave as voltage dependent capacitors:

$$C = K(V_b + V + \Delta V)^{-1/2} = C_0[1 + \Delta V/(V_b + V)]^{-1/2},$$

where V_b is the unbiased barrier voltage, V is the external bias voltage, ΔV is the incremental bias voltage, and C_0 is the capacitance when $\Delta V = 0$. This diode is to be used to produce frequency modulation. If $V_b + V = 4$, what frequency deviation is produced for 1-mV modulating source (ΔV) when the carrier frequency is 100 MHz?

Name, Surname : SAMİ ONUR YAVUZ

Number : B1205.020105

Course Code : EEE321

Course Name : Electromagnetic Fields And Waves

Exam : \square Quiz \otimes Assignment \square Final

Date :08.12.2015

QUESTION

Find the mutual inductance between an infinite filamentary wire on the z axis and a filamentary triangular loop with corners at (0.5,0,0), (1,0,0.5), and (1,0,-0.5).

Name, Surname : SIDDIK BOZBEK Number : B1205.020014

Course Code : EEE321

Course Name : Electromagnetic Fields And Waves

Exam :□ Quiz ⊗ Assignment □ Final

Date :08.12.2015

QUESTION

A filamentary current loop described by $\mathbf{m} = \mathbf{a}_z$ is centered at (0,0,0.5) and an identical loop is centered at (0,0,-0.5). Using reasonable approximations, find the mutual inductance if $\mu = \mu_0$ and the loop area is 0.05 m².

Name, Surname : TAYFUN SURHA Number : B1305.020064

Course Code : EEE321

Course Name : Electromagnetic Fields And Waves

Exam :□ Quiz ⊗ Assignment □ Final

Date :08.12.2015

QUESTION

A uniform current density $\mathbf{J} = -J_0 \mathbf{a}_z$ exists in a conducting slab: $-\infty < x < \infty$, -t/2 < y < t/2, $-\infty < z < \infty$.

(a) Show that

$$\frac{d^2A_z}{dy^2} = \mu J_0, \quad -t/2 < y < t/2.$$

(b) Show that $\mathbf{H} = J_0 y \mathbf{a}_x$, -t/2 < y < t/2, if $H_x(0) = 0$.

Name, Surname : TUNA MUTLU Number : B1205.020011

Course Code : EEE321

Course Name : Electromagnetic Fields And Waves

Date :08.12.2015

QUESTION

An electron in the uniform field $\mathbf{B} = \mathbf{a}_z B_0$ experiences a force $\mathbf{F} = -e\mathbf{u} \times \mathbf{B} = ma$. Express this relation in cylindrical coordinates, equate the ρ components and the ϕ components, and obtain a pair of coupled equations. Let $\rho = \rho_0$ (constant) to reduce the equations, and show that $\omega_c = eB_0/m$ (the cyclotron frequency) is the angular velocity of an electron in a circular orbit with radius $\rho_0 = u_\phi/\omega_c$.