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Law

e Faraday Induction Law for time Dependent B

e Electri Field Strength E expressed in terms of
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e E, —VV, 04/0t, and vxB felds
e Six key equations
e Magnetic Energy



vxB Field inside a Nonconductor

e (1) Suppose that nonmagnetic nonconductor moves in
some arbitrary fashion in a constant magnetic field. Then a
charge Q carried along inside the badyat a velocity v, in a
region where the magnetic flux is B, experiences a
magnetic force QuxB.

« vxB has th edimension of E. The polarisation is therefore
given by

P =¢€yx.(E +v XB). (23-1)

e (2) if the noncoductor is magnetic, its equivalent currents
follow the moving medium, but can be time-dependent if
the ambient B is nonuniform. So the situation can be
complex



Motional Electromotance. The Faraday
Induction Law for vxB Field

e Consider a closed circuit C that moves x \
as a whole and distorts in some \
arbitrary way in a constant magnetic \f/
field as in figure

e Then the induced or motional
electromotance is

‘V=3§ (v xB)-dl=—3§ B - (v X di). (22 \\*—— —\
C C

 vxdlis the area swept by the element dl in 1 second

» Integrating over the complate circuit, we find the induced

eletromotance

dd |
V=-—. | (23-3)

e This is the Faraday induction law for vxB field.



e If Cis open as in figure, then the current flows until the
electric field resulting from the accumulation of charge
exactly cancels the vxB field.

(a) (k)



Example: A simple-minded Generator

e An electric generator transforms mechanical energy to

electric energy, usualy by moving conducting wires in a
direction perpendicular to the magnetic filed.

c

™

(a)

The link slides to the right at a speed v such that v2<<c? in
a uniform B

The resistance at the left-end of the line R, and that of the
link is R,. The gorizontal wires have zero resistance



e The eletromotance is

dd
V= ——-=BDv. (23-4) ”@

e We have disregarded the magnetic flux
resulting from the current I itself. In —et, X Bt

other Word R is large. Then
[= BDv
R+R,

(23-5) —ev

e In the fixed reference frame S, the force o
on a conducting electron of charge Q inside the link is
Q(E + vxB). Thus in the link,

J=0(E+vXB)=0(—VV +v XB). (23-6)



At tb in figure a, V, = IR. In either horizontal line J = ¢E is
finite. Since ¢ —» «, by hypothesis, then E=0 and VV =0
and

V,=V,=0, V.=V,=IR (237
Inside R and R,, with the y-axis an in figure
_ Y -_VBR (238
V=IRO=p g7 (23-8)

The voltage Vc across R, is IR
V.=IR=I(R +R))—IR,=vBD - IR,. (23-9)

This means that the motion generates a voltage vBD in the
link, while its current causes a voltage drop IR,.



e Suppose we connect voltmeter across
the link

e The resistance R, >> R,.

o If the current through the voltmeter
is I, then the read voltage is I R,.

e The magnetic field is B = —Bz. The
current distribution that generates B @

iIs unspecified. Let us set
A, =nBy, A, =(n+1)Bx, (23-10)

o Where n is a pure number. If n=0 then the
currents supplying B are all vertical.
e If n=-1, they are all horizontal

(b)



e Inside R and R,

A

E=-VV-—=-VV (23-11)
___UBR

R+R, (23-12)

e Let us now see what happens inside the link, in its own
reference frame S’. Then

vV v? BR

A=A, ——=nBy — — — y
2 " T ERYRY T (23-13)
A=A, =(n+1)Bx =(n+1)But, (23-14)
vBR ( R )
'=V — = — = —njuBy. (23-15
V'=V —vA, R+R,y vnBy R+R, njuBy. )

R
. = - BD. 23-16
Ve (R + R, H)U ( )



e Observe also the appearance of the 04’ /dt term in S”. Now

A’
E'=-V'V-—, (23-17)

2

U
e Where v-25-2y, r=i-Sx=r-5t~t (@318)

oy’ ay c
e Thus
V' . BA’ av' . OJA,

E' = - y ———= — y———9 (23-19)

3y ot ay ot
= l—( i n)vﬂ —(n+ l)llﬂ]j—“ (23-20)

- \R+R,
R ) . R, .

- _ — BYv. 23-21
(R+Rf LBy =g TR V™ (23-21)

e This shows that, in the moving reference frame of the link
E’ is equal to E plus vxB



Example: Alternating-Current Generator

e The loop of figure rotates at an angular |
velocity w in a uniform, constand B. ‘ =

e We can calculate the induced ;
eletromotance by two way.

e (1) vxB
Along rigth-hand side of the loop
wa wabB |

bv ><B=?Bbsin 0%= > sin @t £. (23-24)
Along the left-hand side, it is same.
Along upper and lower side, vxB is

perpendicular to the wire So

V' =abBw sin wt. (23-25)
(2) do/dt
. dd d :
V= — il abB cos wt = abBw sin wt. (23-26)



Faraday’s Unduction Law for Time-dependent B'’s.

e Imagine two closed and rigit circuit
as in figure. The active circuit a is
stationary and the passive circuit
b moves in some arbitrary way.
The current I, constant

e The electromotance induced in b

V:%@nun1ﬂ=—£?, (23-27)

f,

e Where 0 is the magnetic flux linking b

e The electromotance induced in a rigid and stationary circuit
clying in time-varying magnetic field is

1f=35£~df=f(vx5) m-——-—: f— dst. (23-29)
C &of

oB
o VXE=-—\This is another Maxwell’s equation



Electric field Strength E Expressed in Terms
of V and A

An arbitrary rigit and stationary closed circuit lies in a
time-dependent B. Then

355-&: {—IJH-d.i (23-41)
C dr J 4

We can replace the surface integral on the right by the line

integral of the vector potantial A around C:

d oA
E-dl= —3€A'tﬂ=— - dl. 23-42
é ai o ' t ( ? )

-

Fhie j‘;(E + %j} dl =0,

The expression enclosed in the paranthesis is equal to the

gradient of some function:
dA

E+—=-FV 23-44
S J (23-44)

cA
E=-VV - R (23-45)

The faraday induction law relates the space derivatives of
E to the time derivative of B at given point



The E, VV, 04/0t and vxB Fields

e In any given inertial frame, say S, the equation

5A
E=-VV-—

ol

always applies.

e |If a charge Q moves at a velocity v with respect to S, then
for an observer on S the force is

| 24
F=Q(E+vxB)=0(-vV - — +vxB). (23-59)
4 \:-"r /

e All the variables are measured with respect to the same
reference frame S.



Six Key Equations

« |t i1s useful at this stage to group the following six
equations:

3A
(G) E=-VV- = (23-46)
5B
(G) i_b‘ dl = — T dod, (23-29)
5B
(G) VXE= 0 (23-30)

(G) B=VxA, (23-46)

353-&::;.-,{;[1-&&95!,
=

FKB=II[]J

e The four equation preceded by (G) are general, while the
other two apply only to slowing varying fields.

e In each equation all the terms concern with same
reference frame



Magnetic Energy Density Expressed In
Terms of J and A

e Since Flux linkage is A = LI, we can rewrite the time
derivative of magnetic energy as follows;

d, 1 dA a‘! 3.;
ah _ _; L
dr (
-{7. o4, 26-14
JI dsd jﬁ i (26-14)
LJ’ %m (26-15)

e Now consider the identity

J-J -Adv= JJ’ ——dU+J— A dv. (26-16)
e Therefore

%———IJ A dv (26-17)

ﬁ,,,:%LJ-Adu, (26-18)

e The magnetic energy density at a pointis &n=27-A.



Magnetic Energy Density Expressed In
Terms of H and B

e From ampere’s law

[=¢ Hdl, (26-20)
¢
< Where C’ Is any line of H. Then

;\=dr=J B-dd (26-21)
e |

& = i.nx:# H.rﬂf Bd. (26-22)
[ al

Since the fields extends to infinity, this double integral is
the volume integral of H.B over all space and

1
bn=> JH . Bdv. (26-23)
= The magnetic energy density in nonferromagnetic madia is
thus
., H-B B uH’
(f:m= 7 =ﬂ= 2_ (2{1'24}
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