EEE321 Electromagnetic Fields and Waves

Prof. Dr. Hasan Hüseyin BALIK

(8th Week)

Outline

- Lorentz Force
- Magnetic Force on a Current-Carrying Wire
- Magnetic Force between two Closed Circuit
- Magnetic Force on a Volume Distribution of Current

The Lorentz Force

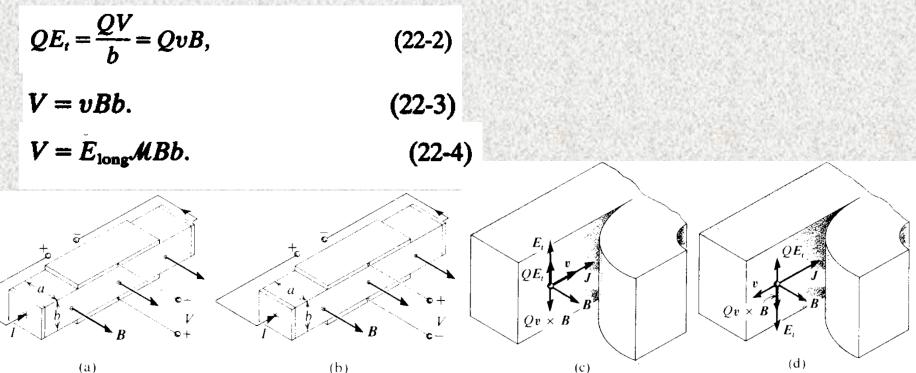
 Experiments Show that the force exerted on a particle of charge Q moving ina vacuum at an instantaneous velocity v in a region where exist both an electric field and magnetic field is

$$\boldsymbol{F} = \boldsymbol{Q}(\boldsymbol{E} + \boldsymbol{v} \times \boldsymbol{B}). \tag{22-1}$$

- This equation is valid even if *v* approaches the speed of ligth. *E*, *B* and *v* can be time dependent but all concern the same reference frame
- Magnetic force (QvxB) is magnetic force and is perpendicular to v. Therefore
 - it can change the direciton of ${\pmb v}$
 - it can not alter its magnetute
 - İt can not alter the kinetic energy

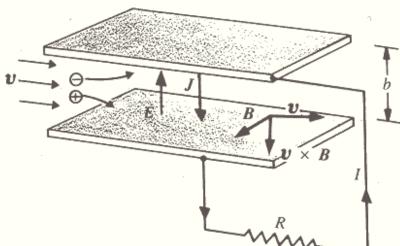
Example: The Hall Effect

- In a bar of conducting material subjected to electri and magnetic field as in figure (a) and (b)
- They also drift sideways because of QvxB force
- As a result there appears a potantial difference between the upper and lower electrodes
- This is called the Hall Effect



Example: Magnetohydrodynamic Generator

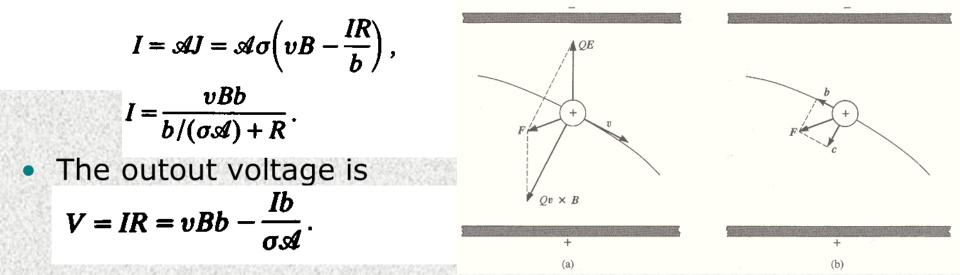
- Magnetohydrodynamic (MHD) generator is a large scale application of the hall effect.
- It converts part of the kinetic energy of a hot gas directly into electric energy
- A hot gas enters on the left at a velocity of the order of 1000 m/s
- It contains salt such as (K₂CO₃) that ionizes readily at high temp.
- The temp. approaches 3000 K⁰
- Conductivity is about 100 S/m
- Positive ions curve downward and electrons upward
- The resulting current I flows through the load resistance R
- The advantage of MHD generator is that comprises no moving parts except for the gas



The function of magnetic force is to compel the positive particules to go to the positive electrode and the negative particules to go to negative electrode.

- Under the action of the forces shown in figure, both move uphill and slow down.
- The Lorentz force acts on a charge Q as if the electric filed strength were E + QvxB. So for the gaz conductivity σ,

$$|\boldsymbol{J}| = |\sigma(\boldsymbol{E} + \boldsymbol{v} \times \boldsymbol{B})| = \sigma(\boldsymbol{v}B - \boldsymbol{E}) = \sigma\left(\boldsymbol{v}B - \frac{V}{b}\right), \quad (22-6)$$



Let us define the efficieny as

$$\mathscr{E} = \frac{\text{Joule losses in } R}{\text{Joule losses in } R + \text{Joule losses in the gas}}$$
(22-10)
$$= \frac{I^2 R}{I^2 R + I^2 b / (\sigma \mathscr{A})} = \frac{R}{R + b / (\sigma \mathscr{A})},$$
(22-11)

Form the above expression for I and for IR,

$$\mathscr{E} = R \frac{I}{\upsilon B b} = \frac{IR}{\upsilon B b} = 1 - \frac{I}{\sigma \mathscr{A} \upsilon B}.$$
 (22-12)

- The efficiency is equal to unity when I=0 or when $R \to \infty$.
- The efficiency is equas to zero when $I = \sigma A v B$ or R = 0, V = 0

Magnetic Force on a Current Carrying Wire

- A stationary wire of cross section A carries a current I in a region where there exist a megnetic field B originating elsevere
- The wire contains N charge carriers per cubic meter drifting at a velocity v, each one of charge Q.
- An element of length *dl* of a wire contains *ANdl* charge carriers. Then the magnetic force on *dl* is

 $dF = \mathscr{A}N \, dl \, Qv \times B = (\mathscr{A}NQv) \, dl \times B = I \, dl \times B, \qquad (22-13)$

- The magnetic force per unit length is therefore IxB
- The total magnetic force on a closed circuit C carriying a current I and lying in a magnetic field is

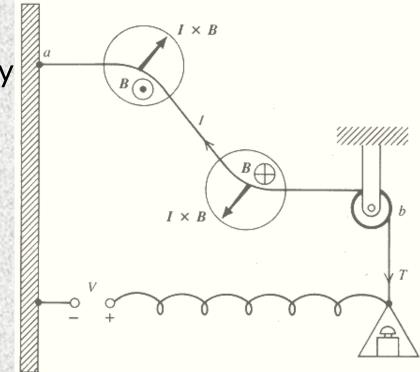
$$\boldsymbol{F} = \boldsymbol{I} \oint_{C} \boldsymbol{d} \boldsymbol{l} \times \boldsymbol{B}. \tag{22-14}$$

Example: Floating-Wire Hodoscope

- The floating-wire hodoscope is a device that simulates the trajectory of a charges particle in a magnetic field.
- Say a charged particle of mass m, charge Q and velocity v follows a certain trajectory in going from a point a to a point b in a magnetic field.
- A ligth wire carring a current *I*, fixed at *a* and going over a pulley at *b*, in the same magnetic field, as in the figüre, will follow that trajectory if

 $\frac{mv}{Q} = \frac{T}{I},$ (22-15)

• *T* is the tension in the wire



- Suppose the beam is normal to B as in fig. (a)
- R_t is the radius of curvature of the trajectory

 $QvB = \frac{mv^2}{R_t}, \qquad R_t = \frac{mv}{QB}. \qquad (22-16)$

- Suppose the wire is also normal to B as in fig(b)
- The element *dl*, with a radius of curvature *R_w* is in equilibrium if the outward magnetic force *BIdl* just compensates the inward component of the tension force *T*:

$$BI dl = 2T \sin \frac{d\theta}{2} = T \frac{dl}{R_w}, \qquad R_w = \frac{T}{IB}.$$
 (22-17)

The two radii are equal if mv T

(a) $R_{w} \theta = T$ (b)

(22-18)

Magnetic Force between two Closed Circuits

The magnetc force exerted by a current I_a on a current I_b is given by

$$F_{ab} = I_b \oint_b dl_b \times \frac{\mu_0}{4\pi} I_a \oint_a \frac{dl_a \times \hat{r}}{r^2},$$
$$= \frac{\mu_0}{4\pi} I_a I_b \oint_b \oint_b dl_b \times \frac{dl_a \times \hat{r}}{r^2},$$

- To Show that $\mathbf{F}_{ab} = -\mathbf{F}_{ba}$, first $dl_b \times (dl_a \times \hat{r}) = dl_a (dl_b \cdot \hat{r}) - \hat{r} (dl_a \cdot dl_b)$
- Then, rearranging terms, $\oint_{a} \oint_{b} \frac{dl_{a}(dl_{b} \cdot \hat{r})}{r^{2}} = \oint_{a} dl_{a} \oint_{b} \frac{dl_{b} \cdot \hat{r}}{r^{2}}.$
 - This integral is zero because b is closed and

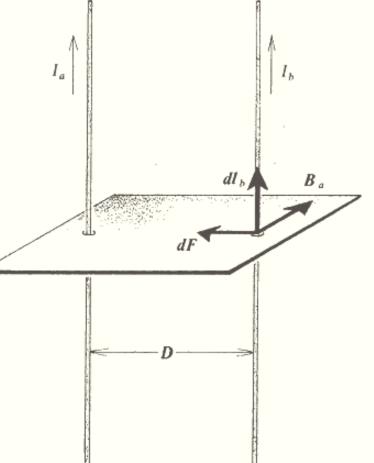
$$\boldsymbol{F}_{ab} = -\frac{\mu_0}{4\pi} I_a I_b \oint_a \oint_b \hat{\boldsymbol{r}} \frac{d\boldsymbol{l}_a \cdot d\boldsymbol{l}_b}{\boldsymbol{r}^2}. \qquad (22-23)$$

Force between two paralel Currents

- Without integration, we can calculate the force per unit length between two long paralel wires bearing current
- At the position of I_b , B_a is $\mu_o I_a/2\Pi D$ in the direction shown in the figure
- The force on a unit length of wire b is thus

$$F' = B_a I_b = \frac{\mu_0 I_a I_b}{2\pi D}.$$
 (22-24)

- The force is attractive if the current flow in the same direction and repulsive otherwise.
- This force is normaly negligible



Magnetic Force on a volume Distribution of Current

Consider a small element of volume of length *dl* paralel to
J and of cross section of *dA*, as in figure.

dl

The magnetic force on the element is

 $dF = (J \, d\mathcal{A}) \, dl \times B = J \times B \, dv$

- The force per unit volume is $F' = J \times B.$ (22-30)
- The total magnetic force on a given distribution of conductiing currents occupying a volüme v is

$$\boldsymbol{F} = \int \boldsymbol{J} \times \boldsymbol{B} \, d\boldsymbol{v}. \tag{22-31}$$