EEE321 Electromagnetic Fields and Waves

Prof. Dr. Hasan Hüseyin BALIK

(6th Week)

Outline

- Type of Magnetic Materials
- Magnetizasyon M
- Magnetic field Strength H and Curl of H
- Dielectric and Magnetic Materials Compared
- Magnetic Susceptibility and Relative Permeability
- Boundary Conditions

Type of Magnetic Material

- (1) All materials are **diamagnetic.** The application of external magnetic field induces moments according to the Faraday induction law. This effect is usually inperceptable and it disappears upon removal of the external field.
- (2) In ost atoms, the magnetic moments resulting from orbitral and spinning motion of the electrons cancel. If the calcellation is not complate, the material is paramagnetic.
- (3) In some materials, the magnetizasyon can be orders of magnitiute larger than in either diamagnetic nor paramagnetic substance. This material is **ferromagnetic**.

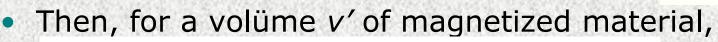
Magnetization M

- The **magnetization M** is the magnetic moment per unit volume of magnetized material at a point.
- If there are N atoms per unit volume, each possessinga magnetic dipol moment m oriented in a given direction, then
 - $\boldsymbol{M} = N\boldsymbol{m}. \tag{20-1}$
- Themagnetization M in magnetic madia corresponds the polarization P in dielectric.
- The unit of magnetization is ampere per meter

Magnetic Field of A Magnetized Bady

- Let us calculate **B** at a point outside a magnetized bady, as in figure.
- The vector potantial at a point P located at a distance r from a current loop of magnetic moment m is

$$\boldsymbol{A} = \frac{\mu_0}{4\pi} \frac{\boldsymbol{m} \times \hat{\boldsymbol{r}}}{r^2}.$$
 (20-2)



$$A = \frac{\mu_0}{4\pi} \int_{v'} \frac{M \times \hat{r}}{r^2} dv' = \frac{\mu_0}{4\pi} \int_{v'} M \times \nabla' \left(\frac{1}{r}\right) dv'. \qquad (20-3)$$
$$A = -\frac{\mu_0}{4\pi} \int_{v'} \left(\nabla' \times \frac{M}{r}\right) dv' + \frac{\mu_0}{4\pi} \int_{v'} \frac{\nabla' \times M}{r} dv' \qquad (20-4)$$
$$= \frac{\mu_0}{4\pi} \int_{\mathcal{A}'} \frac{M \times \hat{n}}{r} d\mathcal{A}' + \frac{\mu_0}{4\pi} \int_{v'} \frac{\nabla \times M}{r} dv', \qquad (20-5)$$

 It is clear that the vector potential in the neighborhood of a piece of magnetized materila is the same as if one had volume and surface current densities. These equivalent current s are;

$$J_e = \nabla \times M$$
 and $\alpha_e = M \times \hat{n}$. (20-6)

More generaly;

$$\boldsymbol{A} = \frac{\mu_0}{4\pi} \int_{\boldsymbol{v}'} \left(\boldsymbol{J}_f + \frac{\partial \boldsymbol{P}}{\partial t} + \boldsymbol{\nabla} \times \boldsymbol{M} \right) d\boldsymbol{v}', \qquad (20-7)$$

Thus a more general form of the Biot-Savart law

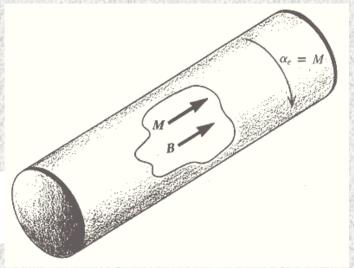
$$\boldsymbol{B} = \frac{\mu_0}{4\pi} \int_{\boldsymbol{v}'} \frac{(\boldsymbol{J}_f + \partial \boldsymbol{P} / \partial t + \boldsymbol{\nabla} \times \boldsymbol{M}) \times \hat{\boldsymbol{r}}}{r^2} d\boldsymbol{v}'.$$
(20-8)

Divergence of B in Presence of Magnetic Material

(20-9)

- The magnetif fields originate either in the macroscopic motion of charge or in equivalent current.
- The relation

 $\boldsymbol{\nabla} \cdot \boldsymbol{B} = 0$



applies even in the presence of magnetic materials.

This is one of Maxvell's equations.

The Magnetic Field Strength H and ∇xH

- For the static fields in the absence of magnetic materials $\nabla \times B = \mu_0 J_f$. (20-10)
- J_e is the current density related to the motion of free charges.
- In the presence of magnetized materials,

$$\nabla \times \boldsymbol{B} = \mu_0 (\boldsymbol{J}_f + \boldsymbol{J}_e). \tag{20-11}$$

$$\nabla \times \boldsymbol{B} = \mu_0 (\boldsymbol{J}_f + \boldsymbol{\nabla} \times \boldsymbol{M}), \qquad (20-12)$$

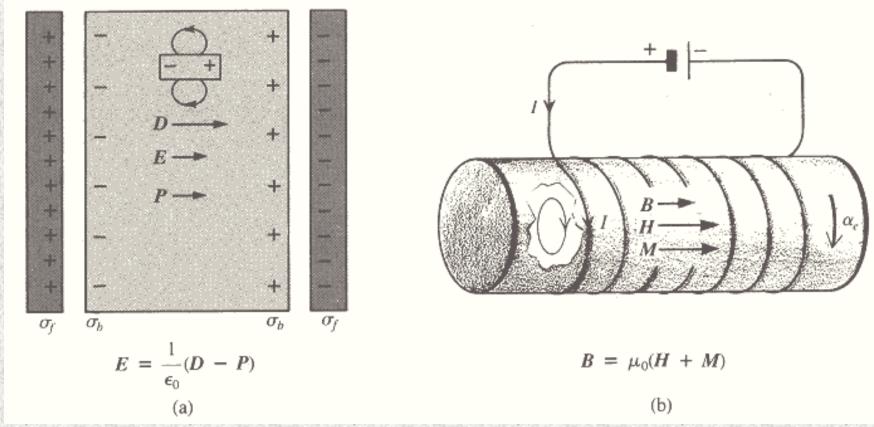
$$\boldsymbol{\nabla} \times \left(\frac{\boldsymbol{B}}{\mu_0} - \boldsymbol{M}\right) = \boldsymbol{J}_f. \tag{20-13}$$

The vector within the parantesis called **magnetic field strength** $H = \frac{B}{M} - M.$ (20-14)

$$H=\frac{D}{\mu_0}-N$$

- Both **H** and **M** are expressed in amperes / meter. Thus $B = \mu_0(H + M)$ (20-15)
- And even inside the magnetized material, $\nabla \times H = J_f$ (20-16)
- It must be rememberred that above equation is only valid in static fields

Dielectric and Magnetic Material Compared



- In dielectric E is smoller because the field of the bound charges opposes that of the free charges
- In magnetic material, B is larger because the field of the equivalent current aids that of the free current

Ampere's Circuital Law in Presence of Magnetic Material

- Let as integrate below equation over an open surface of area A bounded by a curve C
 - $\boldsymbol{\nabla} \times \boldsymbol{H} = \boldsymbol{J}_f \tag{20-16}$
- We found:

$$\int_{\mathscr{A}} (\nabla \times H) \cdot d\mathscr{A} = \int_{\mathscr{A}} J_f \cdot d\mathscr{A}, \qquad (20-18)$$

Using Skotes theorem on the left-hand side,

 $\oint_C \boldsymbol{H} \cdot \boldsymbol{dl} = I_f, \qquad (20-19)$

 Note that I_f does not include the equivalent currents. It can serve to calculate H even in the presence of magnetic materials. This is valid fpr only steady currents

Magnetic Susceptibility (X_e) and Relative Permeability μ_r

 It is convenient to define magnetic susceptibility X_m such that

$$\boldsymbol{M} = \boldsymbol{\chi}_{\boldsymbol{m}} \boldsymbol{H}. \tag{20-21}$$

Then

 $B = \mu_0(H + M) = \mu_0(1 + \chi_m)H = \mu_0\mu_rH = \mu H$, (20-22) where

$$\mu_r = 1 + \chi_m \tag{20-23}$$

is the relative permeability, and $\mu = \mu_r \mu_0$ (20-24)

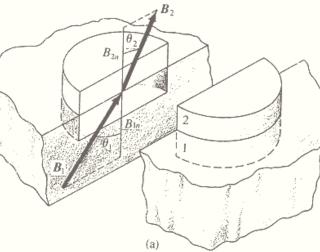
is the permeability of a material. Thus

$$\boldsymbol{M} = \boldsymbol{\chi}_m \frac{\boldsymbol{B}}{\boldsymbol{\mu}}.$$
 (20-25)

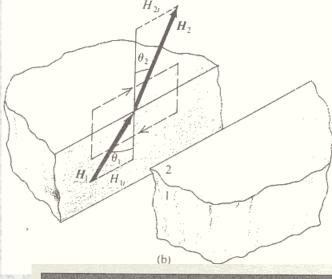
Boundary Condition

- Both B and H obey boundary conditions at the interface between two media
- The net outward flux of **B** through any closed surface is zero $\int \mathbf{B} \cdot d\mathbf{s} = 0. \qquad (18-18)$

$$B_{1n} = B_{2n}.$$
 (20-26)



- Form the circuital law, the line integral of **h.dl** around a path is equal to the current *I* linking the path $\oint H \cdot dl = I_f$, (20-19)
- At the interface, if the current is zero then the tangential component of **H** is continuous across the interface $H_{1t} = H_{2t}$. (20-27)



2

• Setting $\mathbf{B} = \mathbf{\mu} \mathbf{H}$ for both media, Then

 $\frac{\tan\theta_1}{\tan\theta_2} = \frac{\mu_{r1}}{\mu_{r2}}.$

(20-28)