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Lorentz Force

e Imagine a set of charges moving around space. At any
point r in the space and at any time t there exits an
electric field strength E(r,t) and a magnetic flux density
B(r,t) taht are defined as follows. If a charge Q moves at
velocity v at (r,t) in this field, then it suffers a Lorentz
force

F=Q(E +v XB). (18-1)

e The Electric force is proportional to Q but independent of v,
while the magnetic force is orthogonal to both v and B



The Magnetic Flux Density B and Biot-Savart Law

o If the electric circuit carrying a
steady current I, there exists a field
at a point P in the space as;

ﬂoI§d”Xi’ |

B=
47 C r2

(18-5)

e This is called Biot-Savart Law. The unit vector r points
from the source to the point of observation.

e The unit of magnetic flux density is tesla.

volt second _ weber
meter meter meter®’

Tesla = (18-6)

e By definition
o = 41 X 10”7 weber/ampere-meter. (18-7)

e In this circuit we assumed a current flowing through a thin
wire



If the current flows over a finite ar
volume “

- ol o’

de'

4 ), r? v, (18-8)

L A

in which v’ is any volume enclosing all the current and r is
the distance between the elements of volime dv anf the
point P.

Lines of B points everywhere in the direction of B.
Magnetic flux through a surface of area A is

@= [ B-dst webers
g webers (18-9)

This surface is usualy open. If it is closed ¢p=0.



Example-A Long Straight Wire

e An element d/’ of a long straight
wire carrying current I as shown

in figure.

e At a point P(r,6,¢), a magnetic
flux density
_Moldl'sin@ . puoldl’cosa ,

B = 4c  r? i 7 (18-10)

e The relative orientations of I and
B satisfy right-hand screw rule
rda _r’da

l=ptan o, dl’ (18-11)

cos o p
B=td (7 s e da o=t g (18-12)
4750 J_nr2 2rp "



Example-The Circular Loop

e To calculate the value of B on
the axis of a circular loop of
redius a shown in the figure.

e By symmety, the total B points
along the axis and

Idr
dB,=f—; - cos 0, (18-13)
o 2nal pola?
=i 2 O 0=50 (18-14)

e Along the axisi B=pu,I/2a at z=0
and falls off as 1/z° for z2>>a”



Example-The Selenoid

e The selenoid is close-wound of
lenght L with N’ turns per meter,
and its Radius is R. At the
center

_bo (7 R?N'ldz

=3 T (18-15)

L

p ' ' H
= 7"N I R UoN'Isin 6,,,. (18-16)

e See figlre for the definition of
Om and B6e. At one end, again
on the axis

N
= —;\é\ 'I <i
// \uerd N\ i (1817

e Inside a long selenoid B ~ y ,N'I




The Divergence of B

e Assuming that magnetic monopoles do not exist, all
magnetic fileds results from electric current and the lines
of B for each element of current are circles. Thus the net
outward flux of B through any closed surface is zero

L B-dst=0. (18-18)
e Applying the divergence theore.m, it follows that
V-B=0. (18-19)

e These are alternative forms of one of Maxwell’s equations



The Vector Potantial A

e We just seen that |
V-B=0. (18-19)

e It is convenient to set
B=VXA, (18-20)

e Where A is the vector potantial, as opposed to V, which is
the scalar potential

e We can deduce the integral for A, starting from Biot-Savart

law.
X # 1
f TXE = o f (V—\ xJdv', (18-22)

r/

B=ﬁ‘lf(Vx!)dv'=Vx””°I I ) (18-24)
4rx J,, r

A=t [ T . (1825) 4 = Mol f dl'
ar )y r

(18-26)



Example-A and B Near a Long, Straight Wire

T

i

T{ﬂ”

e We first calculate A and then deduce
B. At a distance p

_ poldl’
ax r _ (18-27)
= pol - dl’ ol U+ (PP 1)\ ,
A= L (a2 )T e
\ pol , (L/2)[1+(1+4p* /L)) p,l L
= | - L , .
2z D p . In p (4p*«< LY
pol, R (18-29)

PRy b —_— 2 2
2'a_lnp (4p° < L%

L

e To calculate B = VXA, we use
cylindirical coordinates, keeping in
mind that A is paralel to z-axis and
independent of both ¢ and z

U

I . |
— PXA=—2 4p*> < L?), 18-30
B=VxA=; ¢ (4p ) (18-30)



Example-Pair of Long Parallel Currents

e Figure shows two long parallel wires
separated by a distance D and

;| | currying equal current I in oposite

% directions

T & To calculate A, we use A of a single

/f’%qﬂ/ » wire and add the two vector potantials
5 - d /1 l’ A= ’2‘—;’: (lnp—l:— In fb) 2";1 ;’: 4"; InZ ;(f y_zy ’ (18-31)

d{i e Then B.= % = — ;:: (Dp; Y4 ﬁ) (18-32)

—  B,= —%Jz‘—“; (;13-‘—)1-g)x, (18-33)

B.=0. (18-34)

e Along the line midway between wires
2#01

Bx = - »
nD

B,=0, B, =0. (18-35)



Example-A of Magnetic dipole

e Magnetic dipole is a loop of

wire carrying a current I as
in figure.

e We will find A then deduce
B.

e At the point P in the figure

I[dr
A=E f (18-36)

e By symetry, A is azimuthal,

~and
ol (Tadpcos
r'>=r*+a*-2ar cos y. (18-38) A=t A r (18-37)
X COS ¢ =rcos ¢ (18-39)
r'=r*+a*-2ax cos ¢, (18-40)

= r{l + [9;2- 2% (J;‘cos ¢)]}m =r{1+[ }'2 (18-41)

r



Since, we are interested in the field only at points where
r>>a, we expand 1/r” as an infinite series and disregard
terms involving higer Powers of a/r. Thus

71*'%{1'%”*%“2."“'}' (18-42)
Setting

(Zeos ) =0, (18-43)
We find that

e E R8I SR O E

(18-44)
Disgarding all terms containing the thirdand hiher power of
a/r 2
Lto-[olg s



Finaly
il f:"[l +2 (Ecos ¢) - (l—gjf—zcos2 ¢) :—:] cos ¢ d¢.

4rr r\r 2 32
uola’x  pola*sin 0 o (18-46)
A= = a2 (r°>>a’). (18-47)
By definition
m = na’lZ (18-48)

Is the magnetic dipole moment of the loop. If there are N
turns then m is N times larger.
Since A is azimuthal

A=t "':: I P>»ad) (18-49)




e The fields (a) of an electic dipole and (b) of a magnetic
dipole in the imminidate vicinity of the dipoles

A

(a) (b)



B in the Field of a Magnetic Dipole

e The value of B =V x 4 follows immidiately

B=E""(2c0s 07 +sin 0 8). (18-50)
4nr

e The analogy with the field of electric dipole is obvious.



Magnetic Dipole Moment of an Arbitrary
Current Distribution

e Assume first a plane loop of arbitrary
shape carrying a current I. Then we
set m=dL, (18-51)
where A is the area of the Iodp, and z
is normal to the loop, and satisfy
right-hand screw. We can write

m= yff rxdl, (18-52)
C

e Magnetic dipole moment of C is the vector sum of the
magnetic dipoles of the individual cells. Thus

m=>34I¢ rxdl'= %135 rxadl, (18-53)
cell C

e An arbitrary current distribution
m =} j rxJdv'. (18-54)



Line integral of A.d/

Consider a simple closed curve as in (a) ¢
The line integral of A.dl around C is equal

35A-dl=j(7xA)-dd=IB-m=<p, (19-1)
C -3 A

{a)

Now suppose the coil has N turn turns as in (b)

§A-dt=NfB-4d=N<1>=A, (19-2)
C £ )

Where A is the flux linkage (unit weber turn)
For (c)

fA-dt=fB.dd=A, (19-3)
C =

Although the surface bounded by C is very difficult to find,
the flux linkage A is easly measurable



Laplacian of A

e As we will recall from electric field that
__1 f P, wv=-£ (19-7)
€

e There exists an anologous pair of equations for vector
potantial A.

e We have already found that

A=t f T v, (19-8)
4 ), r

e Where v’is any volume enclosing all the currents. The x
component of this equation is

m=ﬂfé@n (19-9)
, 4 ), r A

e Then wvy24=—uyJ. (19-11)



Divengence of A

e To find divergence of A, first

—y.Le J' “dv=Fe j ( dv', (19-12)
V-A—ﬁ‘?-f (V—l—)-ldv'— ”°f (V’l) Jdv'  (19-13)
4 r 4 r | .

_ Bo f ( v . I VD (19-14)
47 |

e In the time-independant field 3—‘; = 0 and the conservation
of charge V'.J] = 0. Therefore

V-A= —-—f v'. ]dv’= —&J --dsd’' =0, (19-15)
4 4 Jg r

e As a result divergence of A is zero.



Curl of B

e From the definitions given before

VXB=VXx(VXA)=V(V-A)— V?A. (19-16)

e Since Divergenc eof A is zero.
VXB=uyl. (19-17)



Ampere’s Circuital Law

e The line integral of B.dI around a closed curve C is
Important

§B-d1=f (VxB)-daa=u0J'J-d.9¢=uoL (19-18)
C o A

e This is called Ampere’s Circuital Law. The line integral of
B.dl around a closed curve C is equal to p, times the
current linking C.

e This law is analogous to Gaus’s law, which is calculated to
find E.



Example-Long cylindrical Conductor

e Qutside the conductor, B is azimuthal and independent of
¢. Then

g=tol (19-19)
2np’

e Inside the vonductor, for the
circuital path of Radius p,
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Laplacian of B

e We can deduce the value of the laplacian of B from that of
the laplacian of A. Since

V32A = —uyd, (19-22)
e Then
VX (V?A)=—uoVXJ. (19-23)

e The curl of a laplacian is equal to the laplacian of a curl and
thus

VAV XA)=—poV XJ. (19-24)

V2B = —u,V XJ, (19-25)



