EEE321 Electromagnetic Fileds and Waves

Prof. Dr. Hasan Hüseyin BALIK
(3 ${ }^{\text {rd }}$ Week)

Outline

- The Electric Multipoles
- The potential Energy
- The Capacitance
- Electic forces
- Virtual Work

The Electric Dipole-1

- The Electric dipole consists of two charges, one positive and one negative, of the same magnetute, and separated by a distance s.

- Let us find V and \mathbf{E} at the point P situated at a distance r ($r \gg s$)

$$
\begin{align*}
& V=\frac{Q}{4 \pi \epsilon_{0}}\left(\frac{1}{r_{b}}-\frac{1}{r_{a}}\right), \tag{5-1}\\
& r_{a}^{2}=r^{2}+\left(\frac{s}{2}\right)^{2}+r s \cos \theta . \tag{5-2}
\end{align*}
$$

- If we divide both sides by r^{2} and take the inverse

$$
\begin{align*}
\frac{r}{r_{a}} & =\left[1+\left(\frac{s}{2 r}\right)^{2}+\frac{s}{r} \cos \theta\right]^{-1 / 2} \tag{5-3}\\
& =1-\frac{1}{2}\left(\frac{s^{2}}{4 r^{2}}+\frac{s}{r} \cos \theta\right)+\frac{3}{8}\left(\frac{s^{2}}{4 r^{2}}+\frac{s}{r} \cos \theta\right)^{2}-\cdots \tag{5-4}
\end{align*}
$$

The Electric Dipole-2

- If we neglect the terms of order $(s / r)^{3}$ and higher, then

$$
\begin{equation*}
\frac{r}{r_{a}}=1-\frac{s}{2 r} \cos \theta+\frac{s^{2}}{4 r^{2}} \frac{3 \cos ^{2} \theta-1}{2} \tag{5-5}
\end{equation*}
$$

- Similarly

$$
\begin{align*}
& \frac{r}{r_{b}}=1+\frac{s}{2 r} \cos \theta+\frac{s^{2}}{4 r^{2}} \frac{3 \cos ^{2} \theta-1}{2} \tag{5-6}\\
& V=\frac{Q s}{4 \pi \epsilon_{0} r^{2}} \cos \theta \quad\left(r^{3} \gg s^{3}\right) . \tag{5-7}
\end{align*}
$$

- The dipole moment $\mathbf{p}=\mathrm{Qs}$ is a vector that is directed drom the negative to positive charge then

$$
\begin{equation*}
V=\frac{p \cdot \hat{r}}{4 \pi \epsilon_{0} r^{2}} \tag{5-8}
\end{equation*}
$$

The Electric Dipole-3

- Let us find the electric field strength \mathbf{E} in spherical coordinates;

$$
\begin{aligned}
& E_{r}=-\frac{\partial V}{\partial r}=\frac{2 p \cos \theta}{4 \pi \epsilon_{0} r^{3}}, \\
& E_{\theta}=-\frac{1}{r} \frac{\partial V}{\partial \theta}=\frac{p \sin \theta}{4 \pi \epsilon_{0} r^{3}}, \\
& E_{\phi}=-\frac{1}{r \sin \theta} \frac{\partial V}{\partial \phi}=0, \\
& E=\frac{p}{4 \pi \epsilon_{0} r^{3}}(2 \cos \theta \hat{r}+\sin \theta \hat{\theta}) .
\end{aligned}
$$

The Linear Electric Quadrupole

- The Linear electric quadrupole set of three charges that are separated by a distance s and of the same magnetute.

$$
\begin{equation*}
V=\frac{2 Q s^{2}}{4 \pi \epsilon_{0} r^{3}} \frac{\left(3 \cos ^{2} \theta-1\right)}{2} \quad\left(r^{3} \gg s^{3}\right) \tag{5-17}
\end{equation*}
$$

The Potential Energy of a Set of Point Charges-1

- Imagine a set of N point charges distributed in the space

- The total energy of the system is equal to the work performed by the electric forces in the processof dispersing the charges out to infinity
First, let Q_{1} recede to infinity slowly, keeping the electric and mechanical forces in equilibrium.
- The decrease in potential energy is equal to Q_{1} multiplied by the potential V_{1}

$$
\begin{equation*}
\mathscr{C}_{1}=\frac{Q_{1}}{4 \pi \epsilon_{0}}\left(\frac{Q_{2}}{r_{12}}+\frac{Q_{3}}{r_{13}}+\cdots+\frac{Q_{N}}{r_{1 N}}\right) . \tag{6-1}
\end{equation*}
$$

- Similarly

$$
\begin{equation*}
\mathscr{E}_{2}=\frac{Q_{2}}{4 \pi \epsilon_{0}}\left(\frac{Q_{3}}{r_{23}}+\frac{Q_{4}}{r_{24}}+\cdots+\frac{Q_{N}}{r_{2 N}}\right) . \tag{6-2}
\end{equation*}
$$

The Potential Energy of a Set of Point Charges-2

- The total potential energy

$$
\begin{align*}
& \mathscr{E}=\mathscr{E}_{1}+\mathscr{E}_{2}+\mathscr{E}_{3}+\cdots \mathscr{E}_{N} \\
& =\frac{Q_{1}}{4 \pi \epsilon_{0}}\left(0+\frac{Q_{2}}{r_{12}}+\frac{Q_{3}}{r_{13}}+\frac{Q_{4}}{r_{14}}+\cdots+\frac{Q_{N}}{r_{1 N}}\right) \\
& +\frac{Q_{2}}{4 \pi \epsilon_{0}}\left(0+0+\frac{Q_{3}}{r_{23}}+\frac{Q_{4}}{r_{24}}+\cdots+\frac{Q_{N}}{r_{2 N}}\right) \\
& +\frac{Q_{3}}{4 \pi \epsilon_{0}}\left(0+0+0+\frac{Q_{4}}{r_{34}}+\cdots+\frac{Q_{N}}{r_{3 N}}\right)+\cdots \\
& +\frac{Q_{N}}{4 \pi \epsilon_{0}}(0+0+0+0+\cdots+0) \text {. } \\
& { }^{(6-}{ }_{2 \mathscr{E}}=\frac{Q_{1}}{4 \pi \epsilon_{0}}\left(0+\frac{Q_{2}}{r_{12}}+\frac{Q_{3}}{r_{13}}+\frac{Q_{4}}{r_{14}}+\cdots \frac{Q_{N}}{r_{1 N}}\right) \\
& +\frac{Q_{2}}{4 \pi \epsilon_{0}}\left(\frac{Q_{1}}{r_{21}}+0+\frac{Q_{3}}{r_{23}}+\frac{Q_{4}}{r_{24}}+\cdots+\frac{Q_{N}}{r_{2 N}}\right) \\
& +\frac{Q_{3}}{4 \pi \epsilon_{0}}\left(\frac{Q_{1}}{r_{31}}+\frac{Q_{2}}{r_{32}}+0+\frac{Q_{4}}{r_{34}}+\cdots+\frac{Q_{N}}{r_{3 N}}\right)+\cdots \\
& \text { (6- } \quad+\frac{Q_{N}}{4 \pi \epsilon_{0}}\left(\frac{Q_{1}}{r_{N 1}}+\frac{Q_{2}}{r_{N 2}}+\frac{Q_{3}}{r_{N 3}}+\frac{Q_{4}}{r_{N 4}}+\cdots+0\right) \text {. } \tag{6-5}\\
& 2 \mathscr{E}=Q_{1} V_{1}+Q_{2} V_{2}+Q_{3} V_{3}+\cdots+Q_{N} V_{N}, \tag{6-6}\\
& \mathscr{E}=\frac{1}{2} \sum_{i=1}^{N} Q_{i} V_{i} . \tag{6-7}
\end{align*}
$$

- This energy which does not include the energy required to assemble the individual charhes themselves, can be positive, negative or zero.

The Potential Energy of a Continuous Charge Distribution

- For the continuous electric charge distribution, we replace Qi by $\rho d v$ and thr summation by an integration over any volüme that contains all the charge

$$
\begin{equation*}
\mathscr{E}=\frac{1}{2} \int_{v} V \rho d v . \tag{6-8}
\end{equation*}
$$

- This integral is equal to the work performed by the electric forces in going from the given charge distributioun to the situation where $\rho=0$ everywhere
- If there are surface charge density σ, then their stored energy is

$$
\begin{equation*}
\mathscr{E}=\frac{1}{2} \int_{\mathscr{A}} \sigma V d \mathscr{A}, \tag{6-9}
\end{equation*}
$$

- Where A includes all surface carrying charge

The Potential energy expressed in Terms of E

- Uptil now the potential energy is expressed in terms of the charge density and the potential. Both the charge density and the potential are related to \mathbf{E}. Then we shall find that

$$
\begin{equation*}
\mathscr{E}=\int_{v} \frac{\epsilon_{0} E^{2}}{2} d v \tag{6-11}
\end{equation*}
$$

- Where the volüme v includes all the regions where \mathbf{E} exits.

Example-1

- Let ua find the potential energy of the conducting sphere of Radius R carring a charge Q
- First Method: The whole charge Q is at the potential $\frac{Q}{4 \Pi \epsilon_{o} R}$. Then

$$
\begin{equation*}
\mathscr{E}=\frac{1}{2} Q \frac{Q}{4 \pi \epsilon_{0} R}=\frac{Q^{2}}{8 \pi \epsilon_{0} R} . \tag{6-12}
\end{equation*}
$$

- Second Method: Imagine that the Radius of the charged spherical conductor increases slowly and eventually becomes infinity

$$
\begin{equation*}
d \mathscr{E}=\left(\epsilon_{0} E d \mathscr{A}\right)\left(\frac{E}{2}\right) d R=\frac{\epsilon_{0} E^{2}}{2} d v, \tag{6-13}
\end{equation*}
$$

$$
\begin{equation*}
\mathscr{E}=\int_{R}^{\infty} \frac{\epsilon_{0} E^{2}}{2} d v=\int_{R}^{\infty} \frac{\epsilon_{0}}{2}\left(\frac{Q}{4 \pi \epsilon_{0} r^{2}}\right)^{2} 4 \pi r^{2} d r=\frac{Q^{2}}{8 \pi \epsilon_{0} R} \tag{6-14}
\end{equation*}
$$

- Third Method:Let $A(r)$ be the area of any surface of Radius r, concentric with the conducting sphere and outside it. Then from Gauss's law

$$
\begin{align*}
\mathscr{E} & =\frac{1}{2} Q V=\frac{1}{2} \int_{\mathscr{A}(r)} \epsilon_{0} E d \mathscr{A} \int_{R}^{\infty} E d r . \tag{6-15}\\
\mathscr{E} & =\frac{1}{2} \int_{R}^{\infty}\left(\int_{\mathbb{A}(r)} \epsilon_{0} E d \mathscr{A}\right) E d r \tag{6-16}\\
& =\frac{1}{2} \int_{R}^{\infty}\left(4 \pi r^{2} \epsilon_{0} E\right) E d r=\int_{R}^{\infty} \frac{\epsilon_{0} E^{2}}{2} 4 \pi r^{2} d r \tag{6-17}\\
& =\int_{R}^{\infty} \frac{\epsilon_{0} E^{2}}{2} d v=\frac{Q^{2}}{8 \pi \epsilon_{0} R}, \tag{6-18}
\end{align*}
$$

The Capacitance of an Isolated Conductor

- Imagine a finite conductor situated a long distance from any other bady and carrying a charge Q. If Q changes, the conductor's potantials also changes. The ratio called capacitance constant.

$$
\begin{equation*}
C=\frac{Q}{V} . \tag{6-19}
\end{equation*}
$$

- The energy stored in the field of an isolated coductor is;

$$
\begin{equation*}
\mathscr{E}=\frac{Q V}{2}=\frac{C V^{2}}{2}=\frac{Q^{2}}{2 C} . \tag{6-20}
\end{equation*}
$$

- The capacitance depends solely on the size and shape of the conductor.

Example-2

- If an isolated conducting sphere of redius R carries a charge, the potentialat its surface is $\frac{Q}{4 \Pi \epsilon_{o} R}$ and

$$
\begin{align*}
C=4 \pi \epsilon_{0} R & =1.11 \times 10^{-10} R \text { farad } \\
& =111 R \text { picofarads. } \tag{6-21}
\end{align*}
$$

Example-3

- A paralel plate capasitor considt of two conducting plates of area A, separated by a distance s. The plates carry charges Q and $-Q$. We neglect edge effects.

- From Gauss's law

$$
\begin{align*}
& E=\frac{\sigma}{\epsilon_{0}}=\frac{Q}{\mathscr{A} \epsilon_{0}}, \quad V=\frac{Q s}{\mathscr{A} \epsilon_{0}} . \tag{6-22}\\
& C=\frac{\epsilon_{0} \mathscr{A}}{s} . \tag{6-23}
\end{align*}
$$

- The stored energy
$\mathscr{E}=\frac{Q V}{2}=\frac{C V^{2}}{2}=\frac{Q^{2}}{2 C}=\frac{Q^{2} s}{2 \epsilon_{0} \mathscr{A}}$,
- or

$$
\begin{equation*}
\mathscr{B}=\int \frac{\epsilon_{0} E^{2}}{2} d v=\frac{\epsilon_{0}}{2}\left(\frac{Q}{\epsilon_{0} \mathscr{A}}\right)^{2} \mathscr{A} s=\frac{Q^{2} s}{2 \epsilon_{0} \mathscr{A}} . \tag{6-25}
\end{equation*}
$$

Example-4

- (a) Capacitors connected in paralel share the same voltage

$$
\begin{equation*}
c=\frac{Q_{1}+Q_{2}}{V}=\frac{Q_{1}}{V}+\frac{Q_{2}}{V}=C_{1}+C_{2} . \tag{6-26}
\end{equation*}
$$

(b) Capacitors connected in series carry the same charges

$$
V=\frac{Q}{C_{1}}+\frac{Q}{C_{2}}=\frac{Q}{C},
$$

$\frac{1}{C}=\frac{1}{C_{1}}+\frac{1}{C_{2}}, \quad C=\frac{C_{1} C_{2}}{C_{1}+C_{2}}$.

(a)

(b)

Electric Forces on Conductors

- To calculate the magnitute of the electric force, consider a conductor carrying a surface charge density σ with the electric field strength \mathbf{E} near the surface.
- The force on the element of area $d A$ of the conductor is

$$
d F=\frac{\sigma}{2 \epsilon_{0}} \sigma d \mathscr{A}=\frac{\sigma^{2}}{2 \epsilon_{0}} d \mathscr{A} .
$$

- The surface force density is $F^{\prime}=\frac{d F}{d \mathscr{A}}=\frac{\sigma^{2}}{2 \epsilon_{0}}=\frac{\epsilon_{0} E^{2}}{2} \quad$ newtons $/$ meter 2.
- The force per unit area on the conductor is equal to the the Energy density in the field. The net force;

$$
\begin{equation*}
F=\frac{\epsilon_{0}}{2} \oint_{\mathscr{A}} E^{2} d \mathscr{A} \tag{6-31}
\end{equation*}
$$

Calculating Electric Forces by the Method of Virtual Work

- We can also calculate electric force by the method of virtual work.
- Tis method consists in postulating an infinitesimal displacement and then applying the principle of conservation of energy
- First, we deifne the system, and then we calculate the energy fed into it in the course of the displacement
- The energy is equal to the increase in the internal energy pf the system

Example-5

- The parallel-plate capacitor is connected to a battary supplying a fixed voltage
- Assume that the distance s increases by ds, and apply the principles of the virtual work
The increase in the electric energy of the capacitor is

$$
\begin{equation*}
\mathscr{E}_{F}+\mathscr{E}_{B}=\mathscr{E}_{E} \tag{6-32}
\end{equation*}
$$

$$
\begin{equation*}
\mathscr{E}_{F}=F d s, \quad \mathscr{E}_{B}=V d Q \tag{6-33}
\end{equation*}
$$

$$
\begin{align*}
& \mathscr{E}_{B}=V(V d C)=V^{2} d \frac{\epsilon_{0} \mathscr{A}}{s}=-V^{2} \epsilon_{0} \mathscr{A} \frac{d s}{s^{2}}=-\left(\epsilon_{0} E^{2}\right)(\mathscr{A} d s) . \tag{6-34}\\
& \mathscr{E}_{E}=d\left(\frac{\epsilon_{0} E^{2}}{2} \mathscr{A} s\right)=d\left(\frac{\epsilon_{0} V^{2} \mathscr{A} s}{2 s^{2}}\right)=\epsilon_{0} \frac{\mathscr{A} V^{2}}{2}\left(-\frac{d s}{s^{2}}\right)=-\frac{\epsilon_{0} E^{2}}{2} \mathscr{A} d s . \tag{6-35}\\
& F d s-\epsilon_{0} E^{2} \mathscr{A} d s=-\frac{\epsilon_{0} E^{2}}{2} \mathscr{A} d s, \tag{6-36}
\end{align*}
$$

$$
\begin{equation*}
F=\frac{\epsilon_{0} E^{2}}{2} \mathscr{A} \tag{6-37}
\end{equation*}
$$

