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Coulomb’s Law

o r® Experiments Show that the force
exerted by a stationary poit charge
0, A Q. on the stationary point charge Q,

22 gt stuated a distance r is given by
NP
'// Q‘lQb - )
/// — 3-1
Qu./'/ Fap 4.71'60"2 Fabs ( )

The unit vector r,, points from Q, to Qp. This is Coulumb’s
Law. Charges are measured in coulumbs, the force in
Newton and the distance in meters

e The constant €, is the permittivity of free space
€, = 8.854187817 x 10~ ' farad/meter. (3-2)

o Substituting the value of €, we found that

E, ~9x10° Q"2 b newtons, (3-3)

r




The Electrik Fields Strength E

o Electric Field Strength E is defined at a point that the force
excerted on a unit test charge situated at that point

— Exb - Qa -
E.= 0, " tme,r’

newtons/coulomb, or volts/meter, (3-5)

e The force between two electric charges Q_ and Q, results
from the interaction of Q, with the field of Q_ at the
position of Q,, or vice versa



The Principles of Superposition

o If there are several charges, each one imposes its own
field, and the resultant E is simply the vector sum of all the
individual E’s. This is the Principle of Superposition.

B e For the continuous
| distribution of charge,
o] Broid | the electric field
strength E

0.014~ Total electric force

1 pF .,
E = amed ), dv’, (3-6)




The Electric Potantial V and the Curl of E-1

o Consider a test charge Q' that can move about in an
electric field. The total energy required is

B
€= —f EQ'-dl. (3-7)
A :

o If the path is closed, the total work done on Q’ is
_ _§EQ'-dl. (3-8)

e Let us consider that the electric field produced by a single
stationary point charge Q, then

§EQf.dt=QQ' F-di (3-9)

4.7[60 r2

e This line integral is zero and the net work is fixed, is zero.
Thus for any distribution of fixed charges,

éE"”:O' (3-10) e An electrostatic field is
conservative



The Electric Potantial V at a Point

o It is usualy convenient to choose the potantial V at infinity
to be zero, then at point P

v=[E-a (3-16)

o If the field is that of a single point charge, the potantial is
v-[ =5 dr_ (3-17)

EQ T 4.71'601‘

e For any charge distribution of density p

_ 1 pdv’

3-18
drney ), r ( )

b

e The principle of superposition applies to V as to E



Equipotantial Surfaces and Lines of E

e The set of all points in the space that are at a given
potantial defines an equipotantial surface.

e The equipotantial surface about a point charge are
concentric spheres.

e Since E = —-VV, E is everywhere normal to the equipotantial
surface



Gauss’s Law

e Consider that a finite valume v
bounded by a surface A encloses a
charge Q. The flux of E through the

elemeng of area dA is
E-dg =2 142 (3-19)
4.7560 r

e To find the outward flux of E, we

integrate over the area A

f E-dat=2. (3-21)
£ 4

€o

e This is Gauss’s Law. If the charge occupies a finite valume,
then 1
LE-d.si—e—oJ;pdv, (3-23)

o If we apply divergence theorem to the left-hand side,

jV-Edv=—fpdv. v.E=L£ (3-25)

€



Example-1

e A spherical charge distribytion has a
Radius R and a uniform density p.
Let us find E and V

e (a) The electric field strength E
Q =4aR>p. (3-26)

e From Gauss’s Law, outside the sphere at point P’

__L2 _Xp 327
B = dme,rt 3€r (3-27)

e Inside the sphere at point P”
g -QUIRy _Or _ pr
‘T dme,rt dme R 3ep’

(3-28)

e (b) The Electric potantial V outside the sphere at point P’

V,= 0 (3-29)
4re,r




Example-1
e To find the potantial, inside the sphere at point P”

fEdr—f Edr+rE dr. (3-30)

R Qrdr ( r )
= 3-31
. 4me R} + 4J'l:€0R 4J'IIGOR 2 2R? (3-31)

ElEl
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The Equations of Poisson and of Laplace
e Let us replace E by —VV in

v-g=£} (3-25)
e Then
viv=-L£ (4-1)
€o

e This is Poisson’s equation. In the region where the charge
density p is zero,

Vv =0, (4-2)

e This is Laplace’s equatiomn.

e To find V either Laplace or Poisson’s equation with
boundary conditions can be used.



Example-2

e A spherical charge distribytion has a

Radius R and a uniform density p. Let
us find E and V

e QOutside the sphere, p=0 and
ViV, =0. (4-3)

e By symmetry, Vo is independant of both 6 and ®, therefore,

19 /,0V, o zaVo) -
— = e - 4'4
r’or (,-2 ar) 0, ar( or 9, (4-4)
3V, A A
== =——= 4-5
ar rz’ ) EO rz’ ; ) aV
“a_r(' 8r)_ _%’_ (48)
* Inside the sphere L
VV,=-—, (4-6) W I
" € r’ ar  P3e, +5, (+9)
18,3V =-£2 r B
e 7 (o) R “+7) -2, (4-10)



Example-3

e Let us consider a vacuum diode
whose cathode and anode are plane,
paralel and seperated by a distance s
tha tis small compared to their linear
extend.

e We assumed that the electrons have
zero initial velocity and the currrent is
not limited by the cathode

- temperature.

e Since V depends only on x, by hypothesis,Poisson equation;
dv p
- e (4-12)

e pis equal top= ejv ,SO
d*v_J (413)

dx> €,v’



e Where J is the magnetute of the current density. By
conversation of energy

2
I v, (4-14)

2

e Where m is the mass of an electron. Then

d’v J
dx*  €(2eV/m)"” (+13)
dV\* _ 4I(mV [2)"”

(&) =T, (+-16)

e Where A is a constant of integration. At the cathode V is
zero and A= (%)2. By hypotesis A must be zero. Then

dV J 1/2 1/4
=-4z) G) v @17

1/2 1/4
V¥ = 1.5({-) (g) x +B. (4-18)
0



e Where B is the integration constant and is zero because V
IS zero at x=0. So

V= (%)m@)lnsm(;—‘)m. (41 20
e When x=, V_=V. Therefore

N\ 1.0
V=(;) . (4-20)

e Also disgarding the sign of E,

35 \s x|s
4ey(2e/m)\ 2y 32 2
J= ol gsz) —=2.335x10"° Vs; amperes/meter”,
(4-22)
4e,V,
. (4-23)

p= 9s%(x/s)**"



The Law of Conversation of Electric Charge

Consider a closed surface of area A enclosing a voliUme
v, the volime density is p. Charges flow in and out, the
current density at given point on the surface is J. Then

L.I-d.szl— ——[pdv— _& (4-24)

dA point aoutward. Applying divergence theorem on
the left, we found

f V.Jdy= f %P 4o, (4-25)

__9% 4-26
v.-J a: (4-26)

Above equations are integral and differential forms of
the conservation of electric charge respectively



Conduction

e In good conductors, each atom posseses one or two
conduction electrons that are free to roam about in the
metarial. The current density is proportioal to the
electric field.

J = oE, (4-27)
Conductivity o,
Conductor siemens/meter
Aluminium 3.54 x 107
Brass (65.8 Cu, 34.2Zn) 1.59 x 10’
Chromium 3.8 x 107
Copper 5.80 x 107
Gold 4.50 x 107
Graphite 7.1 x 10
Iron 1.0 % 107
Mumetal (75 Ni, 2 Cr, 5 Cu, 18 Fe) 0.16 x 107
Nickel 1.3 x 10’
Seawater ~5
Silver 6.15 x 107
Tin 0.870 x 10’

Zinc - 1.86x 107




Resistance

o If Ohm’'s law applies, the resistance
between to electrodes fixed to a sample
material is

R= —I‘f : (4-28)

» Where V is the potantial difference
between the two electrodes and I is the
current



Conduction in a Steady Electric field

e For simplicity, we assume that the charge carries are
conduction electrons. The athoms vibrate about their
equilibrium positions and each electons has a kinetic
energy. Then

2
'";’th = 3KT = 3(1.38 X 1072 x 300) ~ 6 X 107 joule, ~ (4-32)

12x 107% )1/2
~{—""— ] =10 meters/second. (4-33)
Vo (9.1 x 10~

e Under the action of steady electric field, conduction
electron drifts at a constand velocity such that

J = oE = —Nev,, (4-34)

e In copper N=8.5x10%8. If current of 1 amper flows
through s wire having a cross section of 1 mm?, J=10°
and v,=10% m/s.



The Mobility of Conduction Electrons
The mobility is defined as
=|Ud|_ o

Pal _ >~ 4-36
M E Ne ( )

It is independent of E in linear conductors. Thus

o = NeM (4-37)

The quantities N, M and o for good conductors (gc) and
semiconductors (sc) are related as follows;

Ny >> N, Ogc > O, My << M. (4-39)



The Volume Charge Density in a Conductor-1

e (1) Under steady state conditions and a homogeneous
conductor % = 0 then V.J = 0. Homogenout conductor
satisfiies Ohm’s law;

V.J=V.-0E=0V-E=0, V-E=0. (4-47)

e Under steady state conditions and in homogeneous
conductor p=0.

e (2) Suppose that one injects charge into a piece of
copper by bombarding it with electrons

__%
vr=-3 (4-48)
V. J=oV.-E=—£ (4-49)
€€
op op ( ot )
o _ _ - -2, 4-50
3= Teer Proeme(-C (4-50)



The Volume Charge Density in a Conductor-2

e (3) In an homogeneous conductor carrying an
alternating current, p is zero.

* (4) In an nonhomogeneous conductor carryig a
current, p is not zero. Under steady-state conditions,

V- J=V:(0E)=(Vo)-E+0oV-E=0 (4-51)
g.g=L -_(VO)E (4-52)
€,€ o

e (5) If there is a magnetic fource on the charge carries,
then J = oE does not apply and there exists a valume

charge density.



The Joule Effect

Upon application of an electric field, the electrons
gain kinetic energy between vollisions and they share
tihs extra energy with the lattice. The conductor
heats up. This is the Joule effect. The power
dissipated as heat per cubic meter is;

p=Yl_ (‘;’)(é)=EJ | (4-53)

a a

2
= oE*? =J; . watts/meter". (4-54)

If E and J are sinusoidal functions of the time,

Joms

P:w = Ermerms = O'Esms = 7 . (4'55)



Isolated Conductors in Static Fields

If one charges an isolated homogeneous conductor,
the conduction electrons move about until they ahve
reached their equilibrium positions and then inside
the conductor, there is zero E.

(1) All points inside the conductors are at same
potantial

(2) The volime charge density is zero

(3) Any net static charge resides on the surface of the
conductor

(4) E is normal at the surface of the conductor

(5) Just outside the surface E = %‘ , Where o, is the
surface charge density :



