EEE321 Electromagnetic Fields and Waves

Prof. Dr. Hasan Hüseyin BALIK
(13 ${ }^{\text {th }}$ Week)

Outline

- Nonuniform plane waves
- Total reflection
- Reflection and refraction at the surface of a good conductor

Nonuniform Plane Waves

- In a plane wave, the equiphase surfaces are planes.
- In a uniform plane wave, the amplitute is uniform throughout any given plane equiphase surface
- In a ununiform plane wave, the equiphase surface are still uniform but the amplitute over a given equiphase is not uniform.
- With nonuniform plane waves, we can still wirite that

$$
\begin{align*}
& \boldsymbol{E}=\boldsymbol{E}_{m} \exp j(\omega t-\boldsymbol{k} \cdot \boldsymbol{r}), \tag{31-2}\\
& \boldsymbol{H}=\boldsymbol{H}_{m} \exp j(\omega t-\boldsymbol{k} \cdot \boldsymbol{r}), \tag{31-3}
\end{align*}
$$

- Where the amplitutes $\mathbf{E}_{\mathrm{m}}, \mathbf{H}_{\mathrm{m}}$ may be complex. The wave vector then has the form

$$
\begin{equation*}
\boldsymbol{k}=\boldsymbol{\beta}-j \boldsymbol{\alpha}, \tag{31-4}
\end{equation*}
$$

- Where the two real vectors $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ points in different direction
- Then

$$
\begin{align*}
& \boldsymbol{E}=\boldsymbol{E}_{m} \exp (-\boldsymbol{\alpha} \cdot \boldsymbol{r}) \exp j(\omega t-\boldsymbol{\beta} \cdot \boldsymbol{r}), \tag{31-5}\\
& \boldsymbol{H}=\boldsymbol{H}_{m} \exp (-\boldsymbol{\alpha} \cdot \boldsymbol{r}) \exp j(\omega t-\boldsymbol{\beta} \cdot \boldsymbol{r}) . \tag{31-6}
\end{align*}
$$

- Above equations deifne a wave that propogates in the positive direction of the vector $\boldsymbol{\beta}$ at the phase velocity $v=\frac{\omega}{\beta}$
$\lambda=\frac{2 \pi}{\beta}, \quad$ hence $\quad \beta=\frac{1}{\chi}$.
(31-7) and whose wavelength is
- The ampliture of the wave degreses exponantialy in the positive firection of α and the annenuation distance δ, over which the amplitute decreases by the factor of e, given by

$$
\begin{equation*}
\delta=\frac{1}{\alpha} . \tag{31-9}
\end{equation*}
$$

- Expression of \mathbf{E} in the general wave equation

$$
\begin{gather*}
k^{2}=(\boldsymbol{\beta}-j \boldsymbol{\alpha})^{2}=\beta^{2}-\alpha^{2}-2 j \boldsymbol{\alpha} \cdot \boldsymbol{\beta}=\omega^{2} \epsilon \mu-j \omega \sigma \mu \tag{31-10}\\
\beta^{2}-\alpha^{2}=\omega^{2} \epsilon \mu, \quad 2 \boldsymbol{\alpha} \cdot \boldsymbol{\beta}=\omega \sigma \mu \tag{31-11}
\end{gather*}
$$

Complex Angle

- From Euler formulation $\cos A+j \sin A=e^{j A}$ can be used. By extention A can be any complex number. Then

$$
\begin{equation*}
\sin A=\frac{\exp j A-\exp (-j A)}{2 j}, \quad \cos A=\frac{\exp j A+\exp (-j A)}{2} . \tag{31-14}
\end{equation*}
$$

- Celarly $\sin A$ can now be any complex number. The same applies to $\cos A$. As with real angles

$$
\begin{align*}
& \sin ^{2} A+\cos ^{2} A=1 \\
& \sin (A+2 \pi)=\sin A, \quad \cos (A+2 \pi)=\cos A \tag{31-16}
\end{align*}
$$

Total Reflection

- Total reflection leads to a value of $\sin \theta_{T}>1$, then θ_{T} is complex. Snell's law and Fressnel's equations still apply
- Critical angle of incidence, for which $\theta_{T}=90$ is given by $\sin \theta_{1 c}=\frac{n_{2}}{n_{1}}$.
- At angles $\theta_{I}>\theta_{I c}, \sin \theta_{T}$ is greater than unity than θ_{T} is complex. Then the wave is totaly reflected.
- This phenomenom is independant of the orientation of the E vector in the incident wave
- Total reflection has many uses (i.e optical wave guides)
- Set $\theta_{T}=a+j b$, then
$\sin \theta_{T}=\frac{\exp j(a+j b)-\exp (-j)(a+j b)}{2 j}$

$$
=\frac{\exp j a \exp (-b)-\exp (-j a) \exp b}{2 j} .
$$

- Since this quantity is real, a must be equal to $\pi / 2$ and $\sin \theta_{T}=\frac{\exp b+\exp (-b)}{2}=\cosh b$.

$$
\begin{equation*}
\theta_{T}=\frac{\pi}{2}+j b \tag{31-20}
\end{equation*}
$$

- Then
$\cos \theta_{T}=\frac{\exp j(a+j b)+\exp (-j)(a+j b)}{2}$

$$
\begin{equation*}
=\frac{j[\exp (-b)-\exp b]}{2}=-j \sinh b \tag{31-22}
\end{equation*}
$$

$\cos \theta_{T}=\left(1-\sin ^{2} \theta_{T}\right)^{1 / 2}=-j\left(\sin ^{2} \theta_{T}-1\right)^{1 / 2}$.

- The incident, reflected and transmitted waves are the same form asdefined in Senell's law:

$$
\begin{align*}
E_{I} & =E_{I m} \exp j\left[\omega t-k_{1}\left(x \sin \theta_{I}-z \cos \theta_{I}\right)\right] \tag{31-24}\\
E_{R} & =E_{R m} \exp j\left[\omega t-k_{1}\left(x \sin \theta_{I}+z \cos \theta_{I}\right)\right] \tag{31-25}\\
E_{T} & =E_{T m} \exp j\left[\omega t-k_{2}\left(x \sin \theta_{T}-z \cos \theta_{T}\right)\right] \tag{31-26}
\end{align*}
$$

The Reflected Wave

- Appliying Fresnell's equations, we find that

$$
\begin{equation*}
\left(\frac{E_{R m}}{E_{I m}}\right)_{\perp}=\frac{\left(n_{1} / n_{2}\right) \cos \theta_{I}+j\left(\sin ^{2} \theta_{T}-1\right)^{1 / 2}}{\left(n_{1} / n_{2}\right) \cos \theta_{I}-j\left(\sin ^{2} \theta_{T}-1\right)^{1 / 2}}=\exp j \Phi_{\perp} \tag{31-27}
\end{equation*}
$$

- Where
$\Phi_{\perp}=2 \arctan \frac{\left(\sin ^{2} \theta_{T}-1\right)^{1 / 2}}{\left(n_{1} / n_{2}\right) \cos \theta_{I}}$.
- This is the phase of the reflected wave with respect to the incident wave at any point in the interface. The reflected wave leads the incident wavefor this polarisation
- Since total reflection is lossess, the incident and reflected waves are of the same amplitute

The Transmitted Wave

- The vector wave numver for the transmitted wave is

$$
\begin{align*}
\boldsymbol{k}_{T} & =\boldsymbol{\beta}_{T}-j \boldsymbol{\alpha}_{T}=k_{2}\left(\sin \theta_{T} \hat{\boldsymbol{x}}-\cos \theta_{T} \hat{\boldsymbol{z}}\right) \tag{31-29}\\
& =k_{2}\left(\sin \theta_{T} \hat{\boldsymbol{x}}+j \sinh b \hat{\boldsymbol{z}}\right) . \tag{31-30}
\end{align*}
$$

- This term show that the wave travels in the positive x direction and attenuation in the negative z direction because b is positive.
- The attenuation distance in the direction perpendicular to the interface is

$$
\begin{equation*}
\delta_{z}=\frac{1}{k_{2} \sinh b}=\frac{\lambda_{0}}{n_{2} \sinh b}=\frac{\lambda_{0}}{2 \pi n_{2} \sinh b}=\frac{\lambda_{2}}{2 \pi \sinh b} \tag{31-31}
\end{equation*}
$$

- Applying Fresnell's $\left(\frac{E_{T_{m}}}{E_{I m}}\right)_{\perp}=\frac{2 \cos \theta_{I}}{\cos \theta_{I}-j\left(n_{2} / n_{1}\right)\left(\sin ^{2} \theta_{T}-1\right)^{1 / 2}}$ equations

$$
\begin{align*}
& =\frac{2 \cos \theta_{I}}{\left[\cos ^{2} \theta_{I}+\left(n_{2} / n_{1}\right)^{2}\left(\sin ^{2} \theta_{T}-1\right)\right]^{1 / 2}} \exp j \frac{\Phi_{\perp}}{2} \tag{31-33}\\
& =\frac{2 \cos \theta_{I}}{\left[1-\left(n_{2} / n_{1}\right)^{2}\right]^{1 / 2}} \exp j \frac{\Phi_{\perp}}{2} .
\end{align*}
$$

- Let us calculate \mathbf{H}_{T}. Since the transmitted wave is not uniform, \mathbf{H}_{T} is not transverse. So

$$
\begin{align*}
\boldsymbol{H}_{T} & =\frac{\boldsymbol{k}_{T} \times \boldsymbol{E}_{T}}{\omega \mu_{2}}=\frac{\boldsymbol{k}_{T} \times \boldsymbol{E}_{T}}{Z_{2} k_{2}}=\frac{\boldsymbol{k}_{T} \times E_{T} \hat{\boldsymbol{y}}}{Z_{2} k_{2}} \tag{31-35}\\
& =\frac{\left(\sin \theta_{T} \hat{\boldsymbol{x}}-\cos \theta_{T} \hat{\boldsymbol{z}}\right) \times E_{T} \hat{\boldsymbol{y}}}{Z_{2}}=\frac{\left(\cos \theta_{T} \hat{\boldsymbol{x}}+\sin \theta_{T} \hat{\boldsymbol{z}}\right) E_{T}}{Z_{2}} . \tag{31-36}
\end{align*}
$$

- Then $H_{T m x}=\frac{E_{T m}}{Z_{2}} \cos \theta_{T}, \quad H_{T m z}=\frac{E_{T_{m}}}{Z_{2}} \sin \theta_{T}$.
- Since $H_{T_{m}}=\frac{E_{T_{m}}}{Z_{2}}$,
- Then
$H_{T m x}=H_{T m} \cos \theta_{T}, \quad H_{T m z}=H_{T m} \sin \theta_{T}$,
- Since $\sin \theta_{T}$ is real and positive while $\cos \theta_{T}$ is imaginary and negative the HT vector rotates at the angular velocity ω as in figure

Reflection and Refraction at the Surface of a Good Conductor

- Consider the second medium is a good conductor as fiven in the figures.
- We may write that
$\boldsymbol{E}_{I}=\boldsymbol{E}_{I m} \exp j\left(\omega t-k_{1} x \sin \theta_{I}+k_{1} z \cos \theta_{I}\right)$,
$\boldsymbol{E}_{R}=\boldsymbol{E}_{R m} \exp j\left(\omega t-k_{1} x \sin \theta_{I}-k_{1} z \cos \theta_{I}\right)$,
$\boldsymbol{E}_{T}=\boldsymbol{E}_{T m} \exp j\left(\omega t-k_{1} x \sin \theta_{I}+k_{2} z \cos \theta_{T}\right)$
$=\boldsymbol{E}_{T m} \exp j\left\{\omega t-k_{1} x \sin \theta_{I} \pm k_{2} z\left[1-\left(\frac{n_{1}}{n_{2}}\right)^{2} \sin ^{2} \theta_{I}\right]^{1 / 2}\right\}$.

- We shall assume that

$$
\begin{equation*}
\frac{\delta}{2^{1 / 2} \chi_{1}} \ll 1 \quad \text { or that } \quad\left|\frac{n_{1}}{n_{2}}\right| \ll 1 . \tag{32-7}
\end{equation*}
$$

- Then the expression in bracket in \mathbf{E}_{T} equation is approximately equai to unity. Then

$$
\begin{equation*}
\boldsymbol{E}_{T}=\boldsymbol{E}_{T m} \exp j\left(\omega t-k_{1} x \sin \theta_{l} \pm \frac{(1-j) z}{\delta}\right) \tag{32-8}
\end{equation*}
$$

$$
\begin{equation*}
=\boldsymbol{E}_{T m} \exp \left[j\left(\omega t-k_{1} x \sin \theta_{I}\right) \pm \frac{(1+j) z}{\delta}\right] . \tag{32-9}
\end{equation*}
$$

- For reflection from a good conductor
$\cos \theta_{T}=+\left[1-\left(\frac{n_{1}}{n_{2}}\right)^{2} \sin ^{2} \theta_{l}\right]^{1 / 2} \approx 1, \quad \theta_{T} \approx 0$.

$$
\begin{equation*}
\boldsymbol{E}_{T} \approx \boldsymbol{E}_{T m} \exp \left[j\left(\omega t-k_{1} x \sin \theta_{l}+\frac{z}{\delta}\right)+\frac{z}{\delta}\right] . \quad \boldsymbol{E}_{T} \approx \boldsymbol{E}_{T m} \exp \left[j\left(\omega t+\frac{z}{\delta}\right)+\frac{z}{\delta}\right], \tag{32-10}
\end{equation*}
$$

- The transmitted wave propogates into the conductor along the normal to the interface, whatever the angle of incidence, Also the amplitute decrease by the factor of e over one skin depth

E Normal to the Plane of Incidence

- From the Fresnell's equation with $\left|\frac{n_{1}}{n_{-}}\right| \ll 1$,

$$
\begin{equation*}
\left(\frac{E_{R m}}{E_{I m}}\right)_{\perp}=\frac{\left(n_{1} / n_{2}\right) \cos \theta_{I}-\cos \theta_{T}}{\left(n_{1} / n_{2}\right) \cos \theta_{I}+\cos \theta_{T}} \approx-1 \tag{32-14}
\end{equation*}
$$

- And from the fact that $\cos \theta_{T} \cong 1$,

$$
\begin{equation*}
\left(\frac{E_{T m}}{E_{I m}}\right)_{\perp}=\frac{2\left(n_{1} / n_{2}\right) \cos \theta_{I}}{\left(n_{1} / n_{2}\right) \cos \theta_{I}+\cos \theta_{T}} \approx 2 \frac{n_{1}}{n_{2}} \cos \theta_{I} \approx 0, \tag{32-15}
\end{equation*}
$$

- At the surface of dielectric such that $n_{2} \gg n_{1}$ one also has that

$$
\begin{equation*}
\left(\frac{E_{R m}}{E_{I m}}\right)_{\perp} \approx-1, \quad\left(\frac{E_{I m}}{E_{I m}}\right)_{\perp} \approx 0 . \tag{32-16}
\end{equation*}
$$

E Normal to the Plane of Incidence

- From Fresnell's equation

$$
\begin{align*}
\left(\frac{E_{R m}}{E_{I m}}\right)_{\|} & =\frac{\left(n_{1} / n_{2}\right) \cos \theta_{T}-\cos \theta_{I}}{\left(n_{1} / n_{2}\right) \cos \theta_{T}+\cos \theta_{I}} \\
& \approx \frac{\left(n_{1} / n_{2}\right)-\cos \theta_{I}}{\left(n_{1} / n_{2}\right)+\cos \theta_{I}} \approx-1 . \tag{32-17}\\
\left(\frac{E_{T m}}{E_{I m}}\right)_{\|} & =\frac{2\left(n_{1} / n_{2}\right) \cos \theta_{I}}{\cos \theta_{I}+\left(n_{1} / n_{2}\right) \cos \theta_{T}} \tag{32-18}\\
& \approx \frac{2 n_{1}}{n_{2}}=\frac{2 n_{1} \delta}{1-j}=n_{1} \delta(1+j) . \tag{32-19}
\end{align*}
$$

- Above approximations are not valid at grazing incidence, where θ_{I} is close to 90°.

