EEE321 Electromagnetic Fields and Waves

Prof. Dr. Hasan Hüseyin BALIK
(12 ${ }^{\text {th }}$ Week)

Outline

- Reflection and Refraction
- Snell's Law
- Fresnel's Equations
- Reflection and refraction at the interface between two nonmagnetic nonconductors
- Brewster Angle
- Coefficients of reflection R and of tranmission T

Assumptions

- (1) the media extends to infinity on either side of the interface. This avoids mutiple reflection.
- (2) The media are homogeneous, isotropic, linear and stationary (HILS) and lossless.
- (3) The interface is infinitely thin
- (4) the incident wave is plane and uniform

Reflection and Refraction

- Medium 1 carries the incident and reflected waves.
- Madium 2 carries the refracted wave.
- For simplicity, the incident wave is linearly polarized. Then incident wave,

$$
\begin{equation*}
\boldsymbol{E}_{I}=\boldsymbol{E}_{I m} \exp j\left(\omega_{l} t-\boldsymbol{k}_{I} \cdot \boldsymbol{r}\right), \tag{30-1}
\end{equation*}
$$

- Where the vector wave numver $\mathbf{k}_{\mathbf{I}}$ is real and points the direction of propogation of incident wave
- For convenince, we set the origin of \boldsymbol{r} in the interface and we take $\boldsymbol{E}_{\boldsymbol{I m}}$ to be real
- Since the incident is plane, all the incident rays are paralel.
- By hypotesis, the interface is plane, we expect the reflected and transmitted waves to be the form

$$
\begin{align*}
& \boldsymbol{E}_{R}=\boldsymbol{E}_{R m} \exp j\left(\omega_{R} t-\boldsymbol{k}_{R} \cdot \boldsymbol{r}\right), \tag{30-2}\\
& \boldsymbol{E}_{T}=\boldsymbol{E}_{T m} \exp j\left(\omega_{T} t-\boldsymbol{k}_{T} \cdot \boldsymbol{r}\right) . \tag{30-3}
\end{align*}
$$

- From the wave equation applied to medium 1 , with $\sigma=0$, $\rho_{\mathrm{f}}=0$,

$$
\begin{equation*}
\boldsymbol{\nabla}^{2} \boldsymbol{E}_{R}+\epsilon_{1} \mu_{1} \omega^{2} \boldsymbol{E}_{R}=\boldsymbol{\nabla}^{2} \boldsymbol{E}_{R}+k_{1}^{2} \boldsymbol{E}_{R}=0, \tag{30-4}
\end{equation*}
$$

- Where

$$
\begin{equation*}
k_{1}=\frac{1}{x_{1}}=\frac{n_{1}}{x_{0}}=n_{1} k_{0}=\omega\left(\epsilon_{1} \mu_{1}\right)^{1 / 2} . \tag{30-5}
\end{equation*}
$$

- A similar string of equation applies to k_{2}. Also,

$$
k_{I x}^{2}+k_{I y}^{2}+k_{I z}^{2}=k_{R x}^{2}+k_{R y}^{2}+k_{R z}^{2}=k_{1}^{2}, \quad k_{T x}^{2}+k_{T y}^{2}+k_{T z}^{2}=k_{2}^{2} .
$$

- The wave numbers k_{1} and k_{2} are real, but $\mathbf{k}_{\mathbf{R}}, \mathbf{k}_{\mathbf{T}}$ are vectors that can be complex.
- The tangential componens of \mathbf{E} is continuous at the interface. This means that the tangential component of $\boldsymbol{E}_{\boldsymbol{I}}+\boldsymbol{E}_{\boldsymbol{R}}$ in the mrdium 1, at the interface, is equal to the tangantial component of $\boldsymbol{E}_{\boldsymbol{T}}$.
- Since three wave are of the same frequency, then

$$
\begin{equation*}
\omega_{I}=\omega_{R}=\omega_{T} . \tag{30-7}
\end{equation*}
$$

- If $k_{I y}=0$ then $k_{R y}=0, \quad k_{T y}=0$,
- And $\mathbf{k}_{\mathbf{I}}, \mathbf{k}_{\mathbf{R}}, \mathbf{k}_{\mathbf{T}}$ are coplanar. The \times components of the \mathbf{k}^{\prime} s are thus all equal
$k_{R x}=k_{T x}=k_{l x}=k_{1} \sin \theta_{l}$,
- Where θ_{I} is the angle of incidence. It is now easy to find \mathbf{k}_{R} :

$$
\begin{align*}
& k_{R x}^{2}+k_{R z}^{2}=k_{1 x}^{2}+k_{l z}^{2}=k_{1}^{2} \tag{30-11}\\
& k_{R z}^{2}=k_{1 z}^{2}, \quad k_{R z}=-k_{l z} . \tag{30-12}
\end{align*}
$$

- Then $\mathbf{k}_{\mathbf{R}}$ is also real, the reflected wave is uniform, abd $\theta_{l}=\theta_{R}$.

Snell's Law

- Equation $k_{R x}=k_{T_{x}}=k_{t x}=k_{1} \sin \theta_{1}$, says that,
$k_{T_{\mathrm{r}}}=k_{1} \sin \theta_{I}$.
- Then

$$
\begin{equation*}
k_{T_{2}}^{2}=k_{2}^{2}-k_{T_{x}}^{2}=k_{2}^{2}-k_{1}^{2} \sin ^{2} \theta_{I}=k_{0}^{2}\left(n_{2}^{2}-n_{1}^{2} \sin ^{2} \theta_{I}\right) . \tag{30-15}
\end{equation*}
$$

- If the term in paranthesis is negative, then there is total reflection. If θ_{T} is the angle of refraction
$k_{T_{2}}=-k_{2} \cos \theta_{T}, \quad k_{T_{2}}=k_{2} \sin \theta_{T}$.
- From equation 30.14 and 30.16,
$k_{2} \sin \theta_{T}=k_{1} \sin \theta_{I}, \quad$ or $\quad n_{2} \sin \theta_{T}=n_{1} \sin \theta_{I}$. (30-17)
- This is called Snell's law. The law of reflection and Snell's law are general. Therefore we find that

$$
\begin{align*}
\boldsymbol{E}_{I} & =\boldsymbol{E}_{I m} \exp j\left[\omega t-k_{1}\left(x \sin \theta_{I}-z \cos \theta_{I}\right)\right] \tag{30-18}\\
\boldsymbol{E}_{R} & =\boldsymbol{E}_{R m} \exp j\left[\omega t-k_{1}\left(x \sin \theta_{I}+z \cos \theta_{I}\right)\right] \tag{30-19}\\
\boldsymbol{E}_{T} & =\boldsymbol{E}_{T m} \exp j\left[\omega t-k_{2}\left(x \sin \theta_{T}-z \cos \theta_{T}\right)\right] \tag{30-20}
\end{align*}
$$

Fresnel's Equation

- The conditions of continuity at the interface require that

$$
\begin{align*}
& E_{l x}+E_{R x}=E_{T x}, \quad E_{l y}+E_{R y}=E_{T y}, \tag{30-21}\\
& H_{l x}+H_{R x}=H_{T x}, \quad H_{l y}+H_{R y}=H_{T y} . \tag{30-22}
\end{align*}
$$

- Since the relation

$$
\begin{equation*}
H=\frac{k \times E}{\omega \mu} \tag{30-23}
\end{equation*}
$$

- applies to all three waves.
- We first find $\mathbf{E}_{\mathbf{R}}$ and $\mathbf{E}_{\mathbf{T}}$ then deduce $\mathbf{H}_{\mathbf{R}}$ and $\mathbf{H}_{\mathbf{T}}$.
- For convenience, it is divided into two parts
- E vectors normal to the plane of incidence
- E vectors paralel to the plane of incidence

E Normal to the Plane of Incidence

- The continuity of the tangential component of \mathbf{E} at the interface requires that
$E_{I m}+E_{R m}=E_{T m}$
- At any points on the interface. Similarly the tangential component of \mathbf{H},
$H_{I m} \cos \theta_{I}-H_{R m} \cos \theta_{I}=H_{T m} \cos \theta_{T}$
- Since
$Z=\frac{E}{H}=\frac{\omega \mu}{k}=\frac{\omega \mu}{n k_{0}}=\frac{\omega \mu}{n(\omega / c)}=\frac{c \mu}{n}$,
- Then

$$
\begin{equation*}
\frac{\left(E_{l m}-E_{R m}\right) \cos \theta_{1}}{Z_{1}}=\frac{E_{T m} \cos \theta_{T}}{Z_{2}}, \tag{30-26}
\end{equation*}
$$

- So, firs two Fresnell's Eq.,

$$
\begin{align*}
& \left(\frac{E_{R m}}{E_{I m}}\right)_{\perp}=\frac{Z_{2} \cos \theta_{1}-Z_{1} \cos \theta_{T}}{Z_{2} \cos \theta_{I}+Z_{1} \cos \theta_{T}}, \tag{30-28}\\
& \left(\frac{E_{T m}}{E_{I m}}\right)_{\perp}=\frac{2 Z_{2} \cos \theta_{I}}{Z_{2} \cos \theta_{I}+Z_{1} \cos \theta_{T}} . \tag{30-29}
\end{align*}
$$

E Normal to the Plane of Incidence

- The E's are now all in the plane of incidence and

$$
\begin{gather*}
H_{l m}-H_{R m}=H_{T m}, \tag{30-30}\\
\frac{E_{I m}-E_{R m}}{Z_{1}}=\frac{E_{T m}}{Z_{2}} \tag{30-31}
\end{gather*}
$$

$$
\begin{equation*}
\left(E_{I m}+E_{R m}\right) \cos \theta_{I}=E_{T m} \cos \theta_{T} . \tag{30-32}
\end{equation*}
$$

- Then
$\left(\frac{E_{R m}}{E_{I m}}\right)_{\|}=\frac{Z_{2} \cos \theta_{T}-Z_{1} \cos \theta_{I}}{Z_{2} \cos \theta_{T}+Z_{1} \cos \theta_{I}}$,
$\left(\frac{E_{T m}}{E_{l m}}\right)_{\|}=\frac{2 Z_{2} \cos \theta_{I}}{Z_{2} \cos \theta_{T}+Z_{1} \cos \theta_{I}}$.
- This is the second pair of Fresnell's equations.
- If $\theta_{l}=\theta_{R}=\theta_{T}=0$ then

$$
\begin{align*}
& \frac{E_{R m}}{E_{I m}}=\frac{Z_{2}-Z_{1}}{Z_{2}+Z_{1}}, \tag{30-35}\\
& \frac{E_{T m}}{E_{I m}}=\frac{2 Z_{2}}{Z_{2}+Z_{1}} . \tag{30-36}
\end{align*}
$$

Reflection and Refraction at the Interface between two Nonmagnetic Nonconductors

- We still disgard total reflection
- For nonmagnetic nonconductors,

$$
\begin{equation*}
Z_{1}=\frac{\omega \mu_{0}}{k_{1}}=\frac{c \mu_{0}}{n_{1}}, \quad Z_{2}=\frac{c \mu_{0}}{n_{2}}, \tag{30-37}
\end{equation*}
$$

$$
\begin{equation*}
\left(\frac{E_{R m}}{E_{l m}}\right)_{\perp}=\frac{\left(n_{1} / n_{2}\right) \cos \theta_{I}-\cos \theta_{T}}{\left(n_{1} / n_{2}\right) \cos \theta_{I}+\cos \theta_{T}}, \tag{30-38}
\end{equation*}
$$

$$
\begin{equation*}
\left(\frac{E_{T m}}{E_{I m}}\right)_{\perp}=\frac{2\left(n_{1} / n_{2}\right) \cos \theta_{I}}{\left(n_{1} / n_{2}\right) \cos \theta_{I}+\cos \theta_{T}} . \tag{30-39}
\end{equation*}
$$

- If $\mathrm{n}_{1} / \mathrm{n}_{2}<1$ then $\theta_{T}<\theta_{I}$ and $\cos \theta_{I}<\cos \theta_{T}$
- If $\mathrm{n}_{1} / \mathrm{n}_{2}>1$ then $\theta_{T}>\theta_{I}$ and $\cos \theta_{I}>\cos \theta_{T}$
- The reflected wave is either π radians out of phase with the incident wave at the interface if $\mathrm{n}_{1}<\mathrm{n}_{2}$, or in phase if $\mathrm{n}_{1}>\mathrm{n}_{2}$

Reflection and refraction when $n_{1} / n_{2}=1 / 1.5$, for example, when light falls on a glass of $n=1.5$. The \boldsymbol{E} field is normal to the plane of incidence.

- For an incident wave polarized with its \boldsymbol{E} vector paralel to the plane of incidence

$$
\begin{align*}
& \left(\frac{E_{R m}}{E_{I m}}\right)_{\|}=\frac{-\cos \theta_{I}+\left(n_{1} / n_{2}\right) \cos \theta_{T}}{\cos \theta_{I}+\left(n_{1} / n_{2}\right) \cos \theta_{T}} \tag{30-40}\\
& \left(\frac{E_{T m}}{E_{I m}}\right)_{\|}=\frac{2\left(n_{1} / n_{2}\right) \cos \theta_{I}}{\cos \theta_{I}+\left(n_{1} / n_{2}\right) \cos \theta_{T}} \tag{30-41}
\end{align*}
$$

- Second ratio is always positive. Then $E_{T m}$ and $E_{I m}$ are in phase at the interface
- $E_{T m}$ and $E_{I m}$ can be either in phase or π radius out of phase.
- They are in phase if

$$
\begin{equation*}
\frac{n_{1}}{n_{2}} \cos \theta_{T}>\cos \theta_{I} \tag{30-46}
\end{equation*}
$$

$$
(30-42) \quad \theta_{T}>\theta_{I} \quad \text { and } \quad \theta_{T}+\theta_{I}<\frac{\pi}{2}
$$

$$
\begin{align*}
\sin \theta_{T} \cos \theta_{T}-\sin \theta_{I} \cos \theta_{I}>0, & (30-43) \quad \theta_{T}<\theta_{I} \quad \text { and } \quad \theta_{T}+\theta_{I}>\frac{\pi}{2} \tag{30-47}\\
\sin 2 \theta_{T}-\sin 2 \theta_{I}>0, & (30-44) \tag{30-44}\\
\sin \left(\theta_{T}-\theta_{I}\right) \cos \left(\theta_{T}+\theta_{I}\right)>0 . & (30-45) \tag{30-45}
\end{align*}
$$

Reflection and refraction when $n_{1} / n_{2}=1 / 1.5$, with \boldsymbol{E} parallel to the plane of incidence.

Brewster Angle

- When \mathbf{E} is paralel to the plane of incidence, $E_{r m}$ is either in phase or π radius out of phase with the incident wave depending on $\sin \left(\theta_{T}-\theta_{I}\right) \cos \left(\theta_{T}+\theta_{I}\right)$ is greater of less less than zero.
- There is no reflection when $\theta_{T}=\theta_{I}=0$ or when $\theta_{T}+\theta_{I}=\pi / 2$
- This angle of incidence is called Brewster angle. It also called polarizing angle
- At Brewster angle, $\frac{n_{1}}{n_{2}}=\frac{\sin \theta_{T}}{\sin \theta_{I B}}=\frac{\sin \left(\pi / 2-\theta_{I B}\right)}{\sin \theta_{I B}}=\cot \theta_{I B}$.

Coefficients of Reflection R and of Transmission T

- We exclude total reflection as well as reflection from conducting media.
- Setting $\mu_{r}=1$, we find that

$$
\begin{align*}
& \mathscr{S}_{l, \mathrm{av}}=\frac{1}{2}\left(\frac{\epsilon_{1}}{\mu_{0}}\right)^{1 / 2} E_{I m}^{2} \hat{\boldsymbol{n}}_{I}, \tag{30-51}\\
& \mathscr{S}_{R, \mathrm{av}}=\frac{1}{2}\left(\frac{\epsilon_{1}}{\mu_{0}}\right)^{1 / 2} E_{R m}^{2} \hat{\boldsymbol{n}}_{R}, \tag{30-52}\\
& \mathscr{S}_{T_{\mathrm{av}}}=\frac{1}{2}\left(\frac{\epsilon_{2}}{\mu_{0}}\right)^{1 / 2} E_{T_{m}^{2}}^{2} \hat{\boldsymbol{n}}_{T}, \tag{30-53}
\end{align*}
$$

- Where $\overrightarrow{\boldsymbol{n}_{I}}$ is normal to a wave front of incident wave:

$$
\begin{equation*}
\hat{n}_{I}=\frac{\boldsymbol{k}_{I}}{k_{1}}, \tag{30-54}
\end{equation*}
$$

- And similarly for $\boldsymbol{n}_{\boldsymbol{R}}$ and $\boldsymbol{n}_{\boldsymbol{T}}$

$$
\begin{align*}
R & =\left|\frac{\mathscr{S}_{R, \mathrm{av}} \cdot \hat{\boldsymbol{n}}}{\boldsymbol{S}_{I, \mathrm{av}} \cdot \hat{\mathbf{n}}}\right|=\frac{E_{R m}^{2}}{E_{I m}^{2}}, \\
T & =\left|\frac{\mathscr{S}_{T, \mathrm{av}} \cdot \hat{\boldsymbol{n}}}{\boldsymbol{S}_{I, \mathrm{av}} \cdot \hat{\boldsymbol{n}}}\right|=\left(\frac{\epsilon_{r 2}}{\boldsymbol{\epsilon}_{r 1}}\right)^{1 / 2} \frac{E_{T m}^{2}}{E_{I m}^{2}} \frac{\cos \theta_{T}}{\cos \theta_{I}}=\frac{n_{2} E_{T m}^{2} \cos \theta_{T}}{n_{1} E_{I m}^{2} \cos \theta_{I}} . \tag{30-56}
\end{align*}
$$

- Then from Fresnel's equation fo nonconductors

$$
\begin{align*}
R_{\perp} & =\left[\frac{\left(n_{1} / n_{2}\right) \cos \theta_{I}-\cos \theta_{T}}{\left(n_{1} / n_{2}\right) \cos \theta_{I}+\cos \theta_{T}}\right]^{2}, \tag{30-57}\\
T_{\perp} & =\frac{4\left(n_{1} / n_{2}\right) \cos \theta_{I} \cos \theta_{T}}{\left[\left(n_{1} n_{2}\right) \cos \theta_{I}+\cos \theta_{T}\right]^{2}}, \tag{30-58}\\
R_{\|} & =\left[\frac{-\cos \theta_{I}+\left(n_{1} / n_{2}\right) \cos \theta_{T}}{\cos \theta_{I}+\left(n_{1} / n_{2}\right) \cos \theta_{T}}\right]^{2}, \tag{30-59}\\
T_{\|} & =\frac{4\left(n_{1} / n_{2}\right) \cos \theta_{I} \cos \theta_{T}}{\left[\cos \theta_{I}+\left(n_{1} / n_{2}\right) \cos \theta_{T}\right]^{2}} . \tag{30-60}
\end{align*}
$$

- In both instances $R+T=1$
- At Brewster Angle
$R_{\|}=0$ and $T_{\|}=1$,

The coefficients of reflection R_{\perp} and of transmission T_{\perp} as functions of the angle of incidence θ_{I} for $n_{1} / n_{2}=1 / 1.5$.

The coefficients of reflection $R_{\|}$and of transmission $T_{\|}$as functions of the angle of incidence θ_{I} for $n_{1} / n_{2}=1 / 1.5$. Note the Brewster angle at 56.3°.

