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Electromagnetic Spectrum

Maxwell’e equations impose no limit on the frequency of
electromagnetic waves

Known spectrum exteds continuously from long radio
waves to the very high-energy gamma rays of cosmic
radiation.

At the beginning the frequencies were the order of 100
hertz and the wavelength about 3 megameters

Recenly the frequencies are of the order of 1024 hertz and
the wavelength less then 1 fentometer

Many experiments demonstrate that all wave are
transverse and they travel at the speed of light in free
space

we use H instead of B in dealing with electromagnetic
waves.

— EXH is power density and E/H is impedance



THE ELECTROMAGNETIC SPECTRUM
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Uniform Plane Electromagnetic Waves in a
General Medium

e A wave front is a surface of uniform phase
e The wave front of a planar wave is planar

e A wave is uniform if a wave front is a surface of uniform
phase and uniform amplitute

e In general medium that is homogeneous isotropic, linear
and stationary (HILS) has parameters €, p.and o

e We assume a sinusidal wave travelling in the direction of
the z-axis

e The wave is lineary polarized. So E and H are of the form
E=E, expj(wt —kz), H=H, expj(wt - kz) (28-1)

e Where Em and H,, are vectors that are independant of the
time and of the coordinates

o If there is no attenuation, the wave numver is real
w 2x 1
j[' — —— = = 2 "_2
v A A (£8-2)



Relative Orientation of E, H, and k

e For this Defticular field

—=j F—i“+£"+a‘—&“— kg 2

FrintAe Taxt T ay? Tttt T M (28-3)
e We set p,=0. We also set

J; = oE, (28-4)

e On the assumption that vxB is negligible compared to E,
where v is the velocity of a conduction electron

e The Maxwel’s equations then become

—!.‘Lf < E =1, _J!‘:.E' X E = —f{UﬂHI {23,5]
=jkz+H =0, —jkz X H = oE + jweE (25-6)
e And then to
k
-E=0, =—-———¢XH, (28-7)
(e +;{'}
k.
2 H=10, H=—:zXE. (28-8)



Characteristic Impedance Z of a Medium

e The ratio E/H is the characteristic impedance Z of a
medium of propogation:

E K W
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(28-9)



Wave Number k

e The value of k2 follows from the equation given for

iImpedance definition:

k= w'ep ~ joou = mEF,u(l —ji). (28-10)

(1] 3

= nrgfum.nmil —ji)- (28-11)

(e

e The o terms account for Joule losses and attenuation



Wave Equations

e We found nonhomogenous wave equation for E and B as:
3E _Vp ar

'E — g = — 0—"1 28-12
V'E — €y o € + Wy Y ( )
F?H = ruf—‘ui_I?: F‘J:—F xJ. {23'13}

o If we set p,=0 and ¢, y, 0 are parameters of the medium
’E &l 3E

V°'E —eu

5> = ] —= = — .
Pl il Lo (28-14)
~ B 3
VB — eu % —-HHFHE=FI‘JE:E, (28-15)
ol at
3 E JE
VE - ep— —po— =0, (28-16)
cl o
R JB
VB - ep—5 — o — =0, (28-17)
ot” ol

, . &H oH
e Ortouse Hinstead of B VH-eujz— 1o =

e Then wave equation for E (H is also similar) is given by:
(—k*+ w ep — jwop )E =1, (28-19)

0, (25-18)

ot



Uniform Plane Electromagnetic Waves in
Free Space

e In free space ¢.=1, y,=1, 0=0. There is no attenuation and

the wave number is;
1
— 28-20
k » (28-20)

= w(€gpo)'™. (28-21)

e The speed of ligth is;

C= i ; = 2.99792458 = 10" meters/second. (28-22)

k - (Fuﬂt:-]u

e The characteristic impedance of the vacuum is

Z,=E’ k_=m;:r:= ] =|H|:l'=[”_”.:'

H f-UF(] € :1"-1 € i

= 3.767303 x 10° = 377 ohms. (28-25)

e Thus, since B = u,H in free space,
E 1

—

B (eoto)”

C, or E = Bc. (28-26)



The electric and magnetic energy densities are equal:

£ (1)
F‘UH:-"'IE My VEy

(28-27)

At any instand, the total energy L,
fluctuates with z as in figure and

its time averaged value at any point
E=E, cos{wrt— kz), H=H, cos(mwt — kz).

Abondoning the phasor notation

" €0E tms |, oH tms
& = e 5

The magnetute of the Poynting

vector is
|¥| = |E X H| = E, H,, cos* (ot — kz). (28-30)

= €0E tms = ttoH - (28-28)

Time aveared Poynting vector is
¥..=1Re(E X H*) (28-31)



e For a uniform plane wave in free space

S =1Re (EH®)Z (28-32)
2 5 _ Etms
= iceg |Enl’Z=ceoErnd = Z z (28-33)
E.?
~ ﬁ :  watts/meter’. (28-34)

e The time-aveaged Poyinting vector is equal to total energy
density multiplied by the speed of ligth ¢



Uniform Plane Electromagnetic Waves in
Nonconductor

e The stuation is the same as in free space, with e and p
replacing e, and 4, . The phase velocity is,
1 >0

v = |.-1: ‘ l.'.r!:'L--
(eu)™ (epu,)™ n

e nis index of refraction:
n=1ep,)". (28-39)

(28-38)

e In nonmagnetic media
n=e", (28-40)

e ¢ is frequency dependant so n is also function of
frequency.

e The characteristic impedance of medium is

) E f 1.2 /1, 1”2
z=2=(_) =3(Z)  ohms. (28-41)

e The electric and magnetic energy densities are again equal

eE*/2
ubH?*2 "’

(28-42)



e Time-averaged enery density is

L-E;:I'I'H .llHih'-
_1_

o= 2 - "= eE = uH .. (28-43)

e The poyinting vector Exl-! points again in the direction of

3 [ I
Fu=iRe(EH)2= (=) El.: (28-44)
r"'|Il F r:E‘r?fn-. =
7. = &,/ ) z watts/meter” (28-45)
377
| _ —
= — €L et = VEE L. (28-46)

€

e The time-aveaged Poyinting vector is equal to total energy
density multiplied by the phase velocity



Uniform Plane Electromagnetic Waves in
Conductor- Complex Wave Number (k = — ja)

e In the co_nductin medium

T

k2= S (1 =), (28-52)

e S0 k is complex. Is is the costum to set
k=p3—ja  and then E=E, exp(—az)expj(w— pz), (28-53)

e 1/a is the attenuation distance or the skin dept § over
which the attenuation decreases by a facter of e. So,
1

a==, (28-54)
ﬁ:%:?, (28-55)
e And phase velocity is
u=g. (28-56)
e Letus find a and f in terms of ¢, U, and 0. First we set:
=2 || 9 | 357 %h 28-57
we EEEIE‘E|_ ap/at] ' (28-57)
% = tan /, (28-58)

e This is called loss angle of the medium



e Thus

k= (8 -jay = ()1 - @), (28-60)
a:=; ('Ef")m[(l Tk R (28-61)
1 I ’\ ' i 2s 12 1/2
ﬁ:i—n(%) [(1+ D) 4+ 112, (28-62)
1i2
kz%(l + Gy cxp( j arctan g) (28-63)
e For D<<1 (low loss dielectric)
(€4)'?D _ (p,\'" gcuo 28-64
= Eﬁ_” - (Er) 2 ’ ( }
(o)™ o (28-65)
=% B (em)™
e For D>>1 (good conductor)
R L R L (28-66) n=-w—jﬁ=%3——6(%) (28-69)
k= (%")“2(1 - i), (28-67)

a=p= (zﬁ;&!)”’_ (28-68)



Uniform Plane Electromagnetic Waves in
Conductor- Characteristic Impedance

e The characteristic impedance of a conducting medium is

complex:
E__k _wu (28-70)

_ﬁ=;£-jﬂr k

. . ; 172 ]
€ (1+ 23" € (L+2%)

e This menans that E and H are not in phase:

E W 1

L -—r (28-72) @ = arctan . 28-73

H p-ja B { )
e Therefore

E =E, exp (—az)expj(wt — Bz), (28-74)

H=H, exp(—az)expjlwt— pfz - 8), (28-75)
o With

&=%_ F' 1..—-1__ i I-'zeF;J.Q 1

H, k (e) (1+ @2 (F_j) (E_) (1+ @2)" (28-76)

"'_Hr" 12 l

9:3'??(;) m ohms, (23-??}



Uniform Plane Electromagnetic Waves in
Conductor- Energy Density

e Time-averaged electric and magnetic energy densities are
In ratio
€ €Emd2 1
En uHL2 (14 2%

(28-T8)

e There is less electric energy than magnetic energy because
the conductivity both decreases E and adds conduction
current to the displacement current, which increase H.

e The time-averaged total energy density is;

¥
[ 5

WeE?  + uH?)exp(—2az)=YeEL)[1+(1+ 2%) "] exp(—-2az).
(28-79)



Poyinting Theorem

We referred to the Poyinting vector
F=ExXH (28-80)

This vector is of great theoretical and practical interest. To
prove Poyinting Theorem, first we use vector identity

V(EXH)=H-(VXE)-E-(VXH). (28-81)
In HILS medium
V(ExXH)=-H-pu ? E- {F—EU) (28-82)

- [ “H} E-J,. (28-83)

Now we change the sign and integrate over a volume v of
a finite extent and of a surface of area A, and finaly apply
the divergence theoremﬂon the left then;

J{E:n:ﬂ] d.ul’—dJ JE-J_,—du. (28-84)

is the total power flowing out of closed surface of area A



The time-averaged magnetute of the poyinting vector is
¥..=1Re {|E..exp(—az)expj(wt— Bz)

x H, exp(—az)expj(—wt+ Pz + 0)]} (28-86)
=1E, H, cos 0 exp (—2az), (28-87)
Where B is defined as
cos 6 = P T (28-K8)
(a® + p%)'"
g _(E o PPN I ~_: — .
;fw—(ﬂ) (1+ 9°) " E . cos B exp(—2az) (28-89)
:;3% (E)u[] + @ EL . cos B exp (—2az). (28-90)

#,.= (ume-averaged energy density) x (phase velocity) (28-91)
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