EEE321 Electromagnetic Fileds and Waves

Prof. Dr. Hasan Hüseyin BALIK
(1st Week)

Outline

- Course Information and Policies
- Course Syllabus
- Vector Operators
- Coordinate Systems

Course Information
(see web for more details)

- Instructor: Prof. Dr. Hasan H. BALIK, hasanbalik@gmail.com, hasanbalik@aydin.edu.tr, www. hasanbalik.com
- Lecture Notes:
http://www.hasanbalik.com/LectureNotes/EMFW/
Book: Electromagnetic Fields and Waves, 3rd Edition (Paul Lorrain etc.)
- Grading: Midterm 20\%, Popup Quiz (2) 20%, Assigment 20\% and Final 40\%

Course Syllabus-1

- Vector Operators and Coordinates Systems
- Electric Field
-Coulumb's Law, Gauss's Law, The Equations of Poisson and Laplace, Charge Conservation, Conductors
-Electric Multipoles, Energy, Capacitance, and Forces
-Dielectric Materials
- Magnetic Fields
- Magnetic Flux Density (B), Vector Potantial (A), Ampere's Circuital Law,
- Magnetic Materials
- Magnetic Fources on charges and Currents
-The Faraday Induction Law, Magnetic Energy

Course Syllabus-2

- Electrimagnetic Waves
- Maxwell Equations, Uniform Plane Waves in Free Space / Nonconductors / Conductors
-Reflection and Refraction: The Basic Laws, Fresnel's Equations, Nonuniform Plane Waves, Total Reflection, Reflection and Refraction at the Surface of Good Conductor
- Antennas
-The Electric Dipole Transmitting Antenna, The Half-Wave antenna, Antenna Arrays, The Magnetic Dipole Antenna
1.Vector Operators and Coordinate Systemd

1.Outline

- Vector Algebra
- Invariance
- The Gradient ∇f
- Flux
- The Divergence ∇. B and The Divergence Theorem
- The Line Integral $\int_{a}^{b} \boldsymbol{B} . \boldsymbol{d l}$. Conservative Fields
- The Curl $\nabla \boldsymbol{x} \boldsymbol{B}$ and Stokes's Theorem
- The Laplasian Operator ∇^{2}
- Orthogonal Curcilinear Coordinates

Introduction

- This chapter meant to help those students who are not yet proficient in the use of vector operators
- Mathematicaly a field is a function that describes a physical quantity at all points in the space
- Scalar Fields: This quantity is specified by a single number at each point (Temperature, density, electric potetial)
- Vector Fields:The physical quantitiy is a vector, specified by both number and direction (wind velocity, gravitational force)

Vector Algebra

- This figure shows a \mathbf{A} vector and its three components A_{x}, A_{y}, A_{z}

$$
\begin{equation*}
A=A_{x} \hat{x}+A_{y} \hat{y}+A_{z} \hat{z}, \quad B=B_{x} \hat{x}+B_{y} \hat{y}+B_{z} \hat{z}, \tag{1-1}
\end{equation*}
$$

- Then the algebric operations

$$
\begin{align*}
\boldsymbol{A}+\boldsymbol{B} & =\left(A_{x}+B_{x}\right) \hat{x}+\left(A_{y}+B_{y}\right) \hat{y}+\left(A_{z}+B_{z}\right) \hat{z} \tag{1-2}\\
\boldsymbol{A}-\boldsymbol{B} & =\left(A_{x}-B_{x}\right) \hat{x}+\left(A_{y}-B_{y}\right) \hat{y}+\left(A_{z}-B_{z}\right) \hat{z} \tag{1-3}\\
\boldsymbol{A} \cdot \boldsymbol{B} & =A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}=A B \cos \phi \tag{1-4}
\end{align*}
$$

$$
\begin{align*}
& A \times B=\left|\begin{array}{ccc}
\hat{x} & \hat{y} & \hat{z} \\
A_{x} & A_{y} & A_{z} \\
B_{x} & B_{y} & B_{z}
\end{array}\right|=A B \sin \phi \hat{\boldsymbol{c}}=C, \\
& A=\left(A_{x}^{2}+A_{y}^{2}+A_{z}^{2}\right)^{1 / 2} \tag{1-6}
\end{align*}
$$

- The quantity $\boldsymbol{A} . \boldsymbol{B}$ is the scalar or dot product of \mathbf{A} and \mathbf{B}
- The quantity $\boldsymbol{A x B}$ is vector or cross product of of \mathbf{A} and \mathbf{B}

Invariance

- The quantities, that are independent of the choice of coordinate system, are said to be invariant
-A, B and Φ, dot or cross products
- The quantities, that are dependent of the choice of coordinate system, are not invariant
-Components of a vector

The Gradient $\nabla f-1$

- Consider a scalar point function f that is continuous and differentable. We wish to know how f changes over the infinitesimal distancel dl

$$
\begin{equation*}
d f=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y+\frac{\partial f}{\partial z} d z \tag{1-7}
\end{equation*}
$$

is scalar product of two vectors

$$
\begin{align*}
& d l=d x \hat{x}+d y \hat{y}+d z \hat{z} \tag{1-8}\\
& \text { (1-9) called gradient of } f .
\end{align*}
$$

and
${ }^{(1-10)}$ The symbol is read 'del'

The Gradient ∇f-2

- The gradient f a scalar function at a given point is a vector having the following properties
-Its components are the rate of change of the function along the direction of the coordinate axes
- Its magnetute is the maximum rate of change with distance
-Its direction is that of the maximum rate of change with distance
-It points toward larger values of the function

Flux

- It is often necessary to calculate flux of a vector quantity through a surface. The flux $d \Phi$ of \boldsymbol{B} through an infinitesimal surface dA is

$$
\begin{equation*}
d \Phi=\boldsymbol{B} \cdot \boldsymbol{d} \mathscr{A}, \tag{1-19}
\end{equation*}
$$

- The vector dA is normal to surface.
- For a surface of finite area of A,

$$
\begin{equation*}
\Phi=\int_{S} B \cdot d \mathscr{A} . \tag{1-20}
\end{equation*}
$$

- If surface is closed. The vector dA points outward

The Divergence ∇. B

- The outward flux of a vector through a closed surface can be calculated either from the equations given at previous slide or as follows
- B_{x}, B_{y}, B_{z} are functions of x, y, z.
- The value B_{x} at the center of the righthand face.
The outgoing flux for right-hand and left-
$d \Phi_{R}=\left(B_{x}+\frac{\partial B_{x}}{\partial x} \frac{d x}{2}\right) d y d z, \quad d \Phi_{L}=-\left(B_{x}-\frac{\partial B_{x}}{\partial x} \frac{d x}{2}\right) d y d z$.
- The Total is

$$
\begin{equation*}
d \Phi_{\mathrm{tot}}=\left(\frac{\partial B_{x}}{\partial x}+\frac{\partial B_{y}}{\partial y}+\frac{\partial B_{z}}{\partial z}\right) d v . \tag{1-24}
\end{equation*}
$$

$\Phi_{\text {tot }}=\int_{v}\left(\frac{\partial B_{x}}{\partial x}+\frac{\partial B_{y}}{\partial y}+\frac{\partial B_{z}}{\partial z}\right) d v$.

- The divergence of \boldsymbol{B} is $\boldsymbol{\nabla} \cdot \boldsymbol{B}=\frac{\partial B_{x}}{\partial x}+\frac{\partial B_{y}}{\partial y}+\frac{\partial B_{z}}{\partial z}$.

The Divergence Theorem

- The total flux of a B is eaual to the surface integral of the normal outward components of \mathbf{B}. If we donate by A the area of the surface bounding v, the total flux is

$$
\begin{align*}
\Phi_{\mathrm{tot}}=\int_{\mathscr{A}} \boldsymbol{B} \cdot \boldsymbol{d} \mathscr{A} & =\int_{v}\left(\frac{\partial B_{x}}{\partial x}+\frac{\partial B_{y}}{\partial y}+\frac{\partial B_{z}}{\partial z}\right) d v=\int_{v} \boldsymbol{\nabla} \cdot \boldsymbol{B} d v . \tag{1-27}\\
\int_{\mathscr{A}} \boldsymbol{B} \cdot \boldsymbol{d} \mathscr{A} & =\int_{v} \boldsymbol{\nabla} \cdot \boldsymbol{B} d v . \tag{1-28}
\end{align*}
$$

- This can be applied to any continuous differentiable vectors
- This is divergence theorem also called Green or Gauss's theorem

The Line Integral $\int_{a}^{b} B . d l$. Conservative Fields

- The integrals

$$
\int_{a}^{b} \boldsymbol{B} \cdot \boldsymbol{d l}, \quad \int_{a}^{b} \boldsymbol{B} \times d \boldsymbol{l}, \quad \text { and } \quad \int_{a}^{b} f d l,
$$

- Evaluated from a point a to the point b over some specified curve are examples of line integrals
- A vector field \mathbf{B} is conservative if the line integral of $\boldsymbol{B} . \boldsymbol{d l}$ around any closed curve is zero

$$
\begin{equation*}
\oint_{B} \cdot d \boldsymbol{l}=0 . \tag{1-29}
\end{equation*}
$$

The Curl $\nabla x B-1$

- For any givem field B and for a closed path situated in the $x y$-plane

$$
\begin{align*}
& \boldsymbol{B} \cdot d \boldsymbol{l l}=B_{x} d x+B_{y} d y \tag{1-30}\\
& \oint \boldsymbol{B} \cdot d \boldsymbol{l}=\oint_{x} B_{x} d x+\oint_{y} d y . \tag{1-31}
\end{align*}
$$

- Now consider the infinitesimal path in the figure. There are two contributions.
$\oint B_{x} d x=\left(B_{x}-\frac{\partial B_{x}}{\partial y} \frac{d y}{2}\right) d x-\left(B_{x}+\frac{\partial B_{x}}{\partial y} \frac{d y}{2}\right) d x . \quad \oint B_{x} d x=-\frac{\partial B_{x}}{\partial y} d y d x$.
- Similarly

$$
\begin{equation*}
\oint B_{y} d y=\frac{\partial B_{y}}{\partial x} d x d y, \tag{1-34}
\end{equation*}
$$

- and
$\oint \boldsymbol{B} \cdot \boldsymbol{d l}=\left(\frac{\partial B_{y}}{\partial x}-\frac{\partial B_{x}}{\partial y}\right) d x d y$

The Curl $\nabla x B-2$

- If we set

$$
\begin{equation*}
g_{3}=\frac{\partial B_{y}}{\partial x}-\frac{\partial B_{x}}{\partial y}, \tag{1-36}
\end{equation*}
$$

- Then

$$
\begin{equation*}
\oint B \cdot d l=g_{3} d \mathscr{A} \tag{1-37}
\end{equation*}
$$

- Consider now g_{3} and two symmetric quantities as the components of a vector
$\nabla \times \boldsymbol{B}=\left(\frac{\partial B_{z}}{\partial y}-\frac{\partial B_{y}}{\partial z}\right) \hat{\boldsymbol{x}}+\left(\frac{\partial B_{x}}{\partial z}-\frac{\partial B_{z}}{\partial x}\right) \hat{y}+\left(\frac{\partial B_{y}}{\partial x}-\frac{\partial B_{x}}{\partial y}\right) \hat{z}$,
- Which may be written as

$$
\nabla \times B=\left|\begin{array}{ccc}
\hat{\boldsymbol{x}} & \hat{y} & \hat{z} \tag{1-39}\\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
B_{x} & B_{y} & B_{z}
\end{array}\right|
$$

- And $\oint B \cdot d l=(\nabla \times B) \cdot d \mathscr{A}$.
(1-41) $\quad(\nabla \times B)_{n}=\lim _{\mathscr{A} \rightarrow 0} \frac{1}{\mathscr{A}} \oint_{C} B \cdot d l$.

Stokes'sTheorem

- Equation 1.41 is true only for a path so small that $\nabla x \boldsymbol{B}$ is nearly constant over the surface $\boldsymbol{d A}$ bounded by the path.
- For any fiinite surface

$$
\begin{equation*}
\oint_{c} B \cdot d \boldsymbol{l}=\int_{s}(\nabla \times B) \cdot d d, \tag{1-47}
\end{equation*}
$$

- Where A is the area or any open surface bounded by the curvw C
- Equation 1.47 is called Skotes Theorem

The Laplasian Operator ∇^{2}

- The divergence of the gradient of f is the laplacian of f

$$
\begin{equation*}
\nabla \cdot \nabla f=\nabla^{2} f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}}, \tag{1-50}
\end{equation*}
$$

- The laplasian can also be defined for a vector point-function B
- For Cartesian coordinates,:

$$
\begin{equation*}
\nabla^{2} B=\nabla^{2} B_{x} \hat{x}+\nabla^{2} B_{y} \hat{y}+\nabla^{2} B_{z} \hat{z} \tag{1-51}
\end{equation*}
$$

Orthogonal Curcilinear Coordinates

- It is frequently inconvenient, because of the symmetries that exits in certain fields, to use Cartesian coordinates. Consider the equation

$$
\begin{equation*}
f(x, y, z)=q \tag{1-52}
\end{equation*}
$$

- Consider three equations

$$
\begin{equation*}
f_{1}(x, y, z)=q_{1}, \quad f_{2}(x, y, z)=q_{2}, \quad f_{3}(x, y, z)=q_{3} \tag{1-53}
\end{equation*}
$$

defining three families of surfaces that are mutualy orthogonal

- Call $d l_{1}$ an element of length notmal to the surface q_{1} $d l_{1}=h_{1} d q_{1}$,
- Similarly $d l_{2}=h_{2} d q_{2}$ and $d l_{3}=h_{3} d q_{3}$.
- The valume element is

$$
\begin{equation*}
d v=d l_{1} d l_{2} d l_{3}=h_{1} h_{2} h_{3}\left(d q_{1} d q_{2} d q_{3}\right) \tag{1-55}
\end{equation*}
$$

Cylindrical Coordinates

- In cylindrical coordinates $q_{1}=\rho, q_{2}=\Phi$ and $\mathrm{q}_{3}=\mathrm{z}$
- The vector that defines the point of P is

$$
\begin{equation*}
r=\rho \hat{\boldsymbol{\rho}}+z \hat{z} . \tag{1-57}
\end{equation*}
$$

- The distance element is

$$
\begin{equation*}
d r=d \rho \hat{\boldsymbol{\rho}}+\rho d \phi \hat{\boldsymbol{\phi}}+d z \hat{\boldsymbol{z}} . \tag{1-58}
\end{equation*}
$$

- The infinitesimal volume is

$$
\begin{equation*}
d v=\rho d \rho d \phi d z \tag{1-59}
\end{equation*}
$$

Spherical Coordinates

- In sphericall coordinates $q_{1}=r, q_{2}=\theta$ and $\mathrm{q}_{3}=\Phi$
- The distance element is

$$
\begin{equation*}
d r=d r \hat{\boldsymbol{r}}+r d \theta \hat{\boldsymbol{\theta}}+r \sin \theta d \phi \hat{\boldsymbol{\phi}} . \tag{1-60}
\end{equation*}
$$

- The infinitesimal volume is

$$
\begin{equation*}
d v=r^{2} \sin \theta d r d \theta d \phi . \tag{1-61}
\end{equation*}
$$

Correspondence Between Coordinates

CURVILINEAR CARTESIAN CYLINDRICAL SPHERICAL

q_{1}	x	ρ	r
q_{2}	y	φ	$\boldsymbol{\theta}$
q_{3}	z	z	φ
h_{1}	1	1	1
h_{2}	1	ρ	r
h_{3}	1	1	$r \sin \theta$
$\hat{\boldsymbol{q}}_{1}$	$\hat{\boldsymbol{x}}$	\boldsymbol{p}	$\stackrel{r}{r}$
$\hat{\boldsymbol{q}}_{2}$	$\hat{\boldsymbol{y}}$	ϕ	$\hat{\theta}$
$\hat{\boldsymbol{q}}_{3}$	$\hat{\boldsymbol{z}}$	\boldsymbol{z}	9

The Gradient

- The gradient is the vector rate of change of a scalar function f

$$
\begin{align*}
\nabla f & =\frac{\partial f}{\partial l_{1}} \hat{\boldsymbol{q}}_{1}+\frac{\partial f}{\partial l_{2}} \hat{\boldsymbol{q}}_{2}+\frac{\partial f}{\partial l_{3}} \hat{\boldsymbol{q}}_{3} \tag{1-62}\\
& =\frac{1}{h_{1}} \frac{\partial f}{\partial q_{1}} \hat{\mathbf{q}}_{1}+\frac{1}{h_{2}} \frac{\partial f}{\partial q_{2}} \hat{\boldsymbol{q}}_{2}+\frac{1}{h_{3}} \frac{\partial f}{\partial q_{3}} \hat{\boldsymbol{q}}_{3} . \tag{1-63}
\end{align*}
$$

- For cylindrical coordinates

$$
\begin{equation*}
\nabla f=\frac{\partial f}{\partial \rho} \hat{\boldsymbol{\rho}}+\frac{1}{\rho} \frac{\partial f}{\partial \phi} \hat{\boldsymbol{\phi}}+\frac{\partial f}{\partial z} \hat{z} . \tag{1-64}
\end{equation*}
$$

- For spherical coordinates

$$
\begin{equation*}
\nabla f=\frac{\partial f}{\partial r} \hat{r}+\frac{1}{r} \frac{\partial f}{\partial \theta} \hat{\theta}+\frac{1}{r \sin \theta} \frac{\partial f}{\partial \phi} \hat{\phi} \tag{1-65}
\end{equation*}
$$

The Divergence

- The divergence for orthogonal curcilinear coordinates

$$
\boldsymbol{\nabla} \cdot \boldsymbol{B}=\frac{1}{h_{1} h_{2} h_{3}}\left[\frac{\partial}{\partial q_{1}}\left(B_{1} h_{2} h_{3}\right)+\frac{\partial}{\partial q_{2}}\left(B_{2} h_{3} h_{1}\right)+\frac{\partial}{\partial q_{3}}\left(B_{3} h_{1} h_{2}\right)\right]
$$

- For cylindrical coordinates

$$
\begin{align*}
\nabla \cdot \boldsymbol{B} & =\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho B_{\rho}\right)+\frac{1}{\rho} \frac{\partial B_{\phi}}{\partial \phi}+\frac{\partial B_{z}}{\partial z} \tag{1-72}\\
& =\frac{B_{\rho}}{\rho}+\frac{\partial B_{\rho}}{\partial \rho}+\frac{1}{\rho} \frac{\partial B_{\phi}}{\partial \phi}+\frac{\partial B_{z}}{\partial z} . \tag{1-73}
\end{align*}
$$

- For spherical coordinates

$$
\begin{align*}
\nabla \cdot B & =\frac{1}{r^{2} \sin \theta}\left[\frac{\partial}{\partial r}\left(B_{r} r^{2} \sin \theta\right)+\frac{\partial}{\partial \theta}\left(B_{\theta} r \sin \theta\right)+\frac{\partial}{\partial \phi}\left(B_{\phi} r\right)\right] \tag{1-74}\\
& =\frac{2}{r} B_{r}+\frac{\partial B_{r}}{\partial r}+\frac{B_{\theta}}{r} \cot \theta+\frac{1}{r} \frac{\partial B_{\theta}}{\partial \theta}+\frac{1}{r \sin \theta} \frac{\partial B_{\phi}}{\partial \phi} . \tag{1-75}
\end{align*}
$$

The Curl

- The curl for orthogonal curcilinear coordinates

$$
\nabla \times \boldsymbol{B}=\frac{1}{h_{1} h_{2} h_{3}}\left|\begin{array}{ccc}
h_{1} \hat{\boldsymbol{q}}_{1} & h_{2} \hat{\boldsymbol{q}}_{2} & h_{3} \hat{\boldsymbol{q}}_{3} \tag{1-79}\\
\frac{\partial}{\partial q_{1}} & \frac{\partial}{\partial q_{2}} & \frac{\partial}{\partial q_{3}} \\
h_{1} B_{1} & h_{2} B_{2} & h_{3} B_{3}
\end{array}\right|
$$

- For cvlindrical coordinates

$$
\nabla \times B=\frac{1}{\rho}\left|\begin{array}{ccc}
\frac{\partial}{\partial \rho} & \frac{\partial}{\partial \phi} & \frac{\partial}{\partial z} \tag{1-80}\\
B_{\rho} & \rho B_{\phi} & B_{z}
\end{array}\right|
$$

- For spherical coordinates

$$
\nabla \times \boldsymbol{B}=\frac{1}{r^{2} \sin \theta}\left|\begin{array}{ccc}
\hat{\boldsymbol{r}} & r \hat{\boldsymbol{\theta}} & r \sin \theta \hat{\boldsymbol{\phi}} \tag{1-81}\\
\frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial \phi} \\
B_{r} & r B_{\theta} & r \sin \theta B_{\phi}
\end{array}\right|
$$

The Laplacian-1

- The laplace for scalar function f

$$
\begin{align*}
\nabla^{2} f= & \nabla \cdot \nabla f \tag{1-82}\\
= & \frac{1}{h_{1} h_{2} h_{3}}\left[\frac{\partial}{\partial q_{1}}\left(\frac{h_{2} h_{3}}{h_{1}} \frac{\partial f}{\partial q_{1}}\right)+\frac{\partial}{\partial q_{2}}\left(\frac{h_{3} h_{1}}{h_{2}} \frac{\partial f}{\partial q_{2}}\right)\right. \\
& \left.+\frac{\partial}{\partial q_{3}}\left(\frac{h_{1} h_{2}}{h_{3}} \frac{\partial f}{\partial q_{3}}\right)\right] \tag{1-83}
\end{align*}
$$

- For cylindrical coordinates

$$
\begin{align*}
\nabla^{2} f & =\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial f}{\partial \rho}\right)+\frac{1}{\rho^{2}} \frac{\partial^{2} f}{\partial \phi^{2}}+\frac{\partial^{2} f}{\partial z^{2}} \tag{1-84}\\
& =\frac{1}{\rho} \frac{\partial f}{\partial \rho}+\frac{\partial^{2} f}{\partial \rho^{2}}+\frac{1}{\rho^{2}} \frac{\partial^{2} f}{\partial \phi^{2}}+\frac{\partial^{2} f}{\partial z^{2}}, \tag{1-85}
\end{align*}
$$

- For spherical coordinates

$$
\begin{align*}
\nabla^{2} f & =\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial f}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial f}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} f}{\partial \phi^{2}} \tag{1-86}\\
& =\frac{2}{r} \frac{\partial f}{\partial r}+\frac{\partial^{2} f}{\partial r^{2}}+\frac{\cot \theta}{r^{2}} \frac{\partial f}{\partial \theta}+\frac{1}{r^{2}} \frac{\partial^{2} f}{\partial \theta^{2}}+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} f}{\partial \phi^{2}}, \tag{1-87}
\end{align*}
$$

The Laplacian-2

- For the laplace for vectoral function \mathbf{B}, the equation

$$
\begin{equation*}
\nabla \times(\nabla \times B)=\nabla(\nabla \cdot B)-\nabla^{2} B \tag{1-88}
\end{equation*}
$$

- is used. Then

$$
\begin{equation*}
\nabla^{2} B=\nabla(\nabla \cdot B)-\nabla \times(\nabla \times B) . \tag{1-89}
\end{equation*}
$$

