(ADVANCED) DATABASE SYSTEMS
(DATABASE MANAGEMENTS)

PROF. DR. HASAN HUSEYiN BALIK
(6™ WEEK)

4. OUTLINE

4. Implementation
4.1 Introduction to SQL
4.2 Advanced SQL

4.3 Database Application Development
4.4 Data Warehousing

4.1 INTRODUCTION TO SQL

OBJECTIVES

Define terms
nterpret history and role of SQL

Define a database using SQL data definition
anguage

Write single table queries using SQL
Establish referential integrity using SQL
Discuss SQL:1999 and SQL:2011 standards

SQL OVERVIEW

Structured Query Language - often pronounced
“Sequel”

The standard for relational database
management systems (RDBMS)

RDBMS: A database management system that
manages data as a collection of tables in which

all relationships are represented by common
values in related tables

HISTORY OF SQL

1970-E. F. Codd develops relational database concept

1974-1979-System R with Sequel (later SQL) created at
IBM Research Lab

1979-0racle markets first relational DB with SQL
1981 - SQL/DS first available RDBMS system on DOS/VSE

Others followed: INGRES (1981), IDM (1982), DG/SGL
(1984), Sybase (1980)

1986-ANSI SQL standard released

1989, 1992, 1999, 2003, 2006, 2008, 2011 -Major ANSI
standard updates

Current-SQL is supported by most major database vendors

PURPOSE OF SQL STANDARD

Specify syntax/semantics for data definition and
manipulation

Define data structures and basic operations

Enable portability of database definition and
application modules

Specify minimal (level 1) and complete (level 2)
standards

Allow for later growth/enhancement to standard
(referential integrity, transaction management,
user-defined functions, extended join
operations, national character sets)

BENEFITS OF A STANDARDIZED RELATIONAL
LANGUAGE

Reduced training costs

Productivity
Application portability

Application longevity
Reduced dependence on a single vendor

Cross-system communication

SQL ENVIRONMENT

Catalog
A set of schemas that constitute the description of a database
Schema

The structure that contains descriptions of objects created by a user
(base tables, views, constraints)

Data Definition Language (DDL)

Commands that define a database, including creating, altering, and
dropping tables and establishing constraints

Data Manipulation Language (DML)
Commands that maintain and query a database
Data Control Language (DCL)

Commands that control a database, including administering
privileges and committing data

A simplified schematic of a typical SQL environment, as
described by the SQL: 2011 standard

SQAL Environment

PROGRAMS
Catalog: DEV_C Catalog: PROD_C

< ol
- — SAaL —
gueries

——

Required Required
information information
schema schema

User schemas User schemas
| |

DDL, DML, DCL, and the database development process

DDL

Define the database:
CREATE tables, indexes, views
Establish foreign keys
Drop or truncate tables

Physical Design

DML

Load the database:
INSERT data .

UPDATE the database '- implementation

Manipulate the database: - ' -
SELECT

DCL
Control the database: :
GRANT, ADD, REVOKE Maintenance

SQL DATABASE DEFINITION

Data Definition Language (DDL)

Major CREATE statements:

CREATE SCHEMA-defines a portion of the
database owned by a particular user

CREATE TABLE-defines a new table and its
columns

CREATE VIEW-defines a logical table from one or
more tables or views

Other CREATE statements: CHARACTER SET,
COLLATION, TRANSLATION, ASSERTION, DOMAIN

SQL DATA TYPES

TABLE 6-2 Sample SQL Data Types

String CHARACTER (CHAR) Stores string values containing any characters in a
character set. CHAR is defined to be a fixed length.

CHARACTER VARYING Stores string values containing any characters in a
(VARCHAR or VARCHAR2) character set but of definable variable length.

BINARY LARGE OBJECT Stores binary string values in hexadecimal format.

(BLOB) BLOB is defined to be a variable length. (Oracle
also has CLOB and NCLOB, as well as BFILE for
storing unstructured data outside the database.)

NUMERIC Stores exact numbers with a defined precision and scale.

INTEGER (INT) Stores exact numbers with a predefined precision
and scale of zero.

Temporal TIMESTAMP Stores a moment an event occurs, using a definable
TIMESTAMP WITH LOCAL fraction-of-a-second precision. Value adjusted to the
TIME ZONE user’s session time zone (available in Qracle and MySQL).

BOOLEAN Stores truth values: TRUE, FALSE, or UNKNOWN.

STEPS IN TABLE CREATION

. ldentify data types for attributes

. ldentify columns that can and cannot be null

. ldentify columns that must be unique (candidate keys)

. ldentify primary key-foreign key mates
. Determine default values

. ldentify constraints on columns (domain
specifications)

. Create the table and associated indexes

General syntax for CREATE TABLE statement used in
data definition language

CREATE TABLE tablename
({column definition [table constraint] } ., ..
[ON COMMIT {DELETE | PRESERVE} ROWS]);

where column definition ==
column_name
{domain name | datatype [(size)] }
[column_constraint _clause. .]
[default value]
[collate clause]

and table constraint ::==
[CONSTRAINT constraint_name]
Constraint_type [constraint_attributes]

THE FOLLOWING SLIDES CREATE TABLES FOR
THIS ENTERPRISE DATA MODEL

CUSTOMER PRODUCT
Customer ID Product ID
Customer Name Standard Price

Places Has

T Is Placed By \ Is For

ORDER i K
Order ID Contains ORDER LINE

Customer ID Is Contained In Quantity
Order Date

\

SQL database definition commands for PVF Company

CREATE TABLE Customer_T
(CustomerlD NUMBER(11,0) MOT NULL,

CustomerName VARCHAR2(25) MOT NULL,

CustomerAddress VARCHAR2(30),

CustomerCity VARCHARZ(20),

CustomerState CHAR(2),

CustomerPostalCode VARCHAR2(9),

COMNSTRAINT Customer_PK PRIMARY KEY (CustomerlD));

CREATE TABLE Order_T
(OrderlD NUMBER(11,0) MNOT MULL,
OrderDate DATE DEFAULT SYSDATE,
Customer|D MUMBER(11,0),
CONSTRAINT Order_PK PRIMARY KEY (OrderiD),
COMNSTRAINT Order_FK FOREIGN KEY (CustomerlD) REFERENCES Customer_T(CustomerlD)):

CREATE TABLE Product_T
(ProductID MUMBER(11,0) MOT MNULL,
ProductDescription VARCHAR2(50),
ProductFinish VARCHARZ2(20)
CHECK (ProductFinish IN ('Cherry', 'Natural Ash’, "White Ash’,
'Red Qak’, "Natural Oak’, "'Walnut')),
ProductStandardPrice DECIMAL(G,2),
ProductLinelD INTEGER,
CONSTRAINT Product_PK PRIMARY KEY (ProductiD));

CREATE TABLE OrderLine_T
(OrderlD NUMBER({11,0) MOT MULL,
ProductlD INTEGER MOT NULL,
OrderedQuantity NUMBER(11,0),
CONSTRAINT OrderLine_PK PRIMARY KEY (OrderlD, ProductlD),
CONSTRAINT OrderLine_FK1 FOREIGN KEY {OrderlD) REFERENCES Order_T(OrderlD),
CONSTRAINT OrderLine_FK2 FOREIGN KEY (ProductlD) REFERENCES Product_T(ProductID));

(Oracle 12c)

Overall table
definitions

Defining attributes and their data types

CREATE TABLE Product T

(ProductiD NUMBER(11.0) | NOTNULL,
roductDescription VARCHAR2(s0),

DroductFinish VARCHAR2(20)
CHECK (ProductFinish IN (Cherry’, Natural Ash’, 'White Ash’

Red 0k’ "Natural Oak’, Walnut')
ProductStandardPrice DECIMAL(6,2),

ProductlinelD INTEGER
CONSTRAINT Product_PK PRIMARY KEY (ProductiD))

Non-nullable specification

CREATE TABLE Product T

(ProductiD NUMBER(11.0) | NOTNULL,
roductDescription VARCHAR2(s0),

DroductFinish VARCHAR2(20)
CHECK (ProductFinish IN (Cherry’, Natural Ash’, 'White Ash’

Red 0k’ "Natural Oak’, Walnut')
ProductStandardPrice DECIMAL(6,2),

productinel NIfcep, Primary keys
can never have

CONSTRAINT Product_PK PRIMARY KEY (ProductiD); NULL values
|dentifying primary key

Non-nullable specifications

CREATE TABLE OrderLine_T
(OrderlD
ProductID
OrderedQuantity

NUMBER(11,0) NOT NULL,
INTEGER NOT NULL,

NUMBER(11,0),

CONSTRAINT OrderLine_PK PRIMARY KEY (OrderID, ProductID),

Primary key

CONSTRAINT OrderLine_FK1 FOREIGN KEY (OrderlD) REFERENCES Order_T(OrderlD),
CONSTRAINT OrderLine_FK2 FOREIGN KEY (ProductiD) REFERENCES Product_T(ProductID)):

Some primary keys are composite—
composed of multiple attributes

Controlling the values In attributes

CREATE TABLE Order_T
(OrderlD NUMBER(11,0) NOT NULL,

OrderDate DATE DEFAULT SYSDATE,
CustomeriD NUMBERTTT.0L. — Default value

CONSTRAINT Order_PK PRIMARY KEY (OrderlD),
CONSTRAINT Order_FK FOREIGN KEY (CustomerID) REFERENCES Customer_T(CustomerlD));

CREATE TABLE Product_T
(ProductlD NUMBER(11,0) NOT NULL,
ProductDescription VARCHAR2(50),
ProductFinish VARCHAR2(20)

Domain constraint CHECK (ProductFinish IN ("Cherry’, 'Natural Ash’, "White Ash’,
‘Red Oak’, 'Natural Oak’, 'Walnut")),

ProductStandardPrice DECIMAL(6,2),
ProductLinelD INTEGER,
CONSTRAINT Product_PK PRIMARY KEY (ProductID));

Identifying foreign keys and establishing relationships

CREATE TABLE Customer_T

(CustomerlD NUMBER(11,0) NOT NULL,
CustomerName VARCHAR2(25) NOT NULL,

CustomerAddress VARCHAR2(30),

)

Primary key of SUstomercity AR
CustomerState CHAR(2),

CustomerPostalCode VARCHARZ(9),
ICONSTRAINT Customer_PK PRIMARY KEY (CustomeriD))}

parent table

CREATE TABLE Order_T
(OrderlD NUMBER(11,0) NOT NULL,
OrderDate DATE DEFAULT SYSDATE,
CustomerlD NUMBER(11,0),
CONSTRAINT Order_PK PRIMARY KEY (OrderID),
CONSTRAINT Order_FK FOREIGN KEY (CustomerID) REFERENCES Customer_T(CustomerlD));

Foreign key of dependent table

DATA INTEGRITY CONTROLS

Referential integrity—constraint that
ensures that foreign key values of a
table must match primary key values
of a related table in 1:M relationships

Restricting;:
Deletes of primary records

Updates of primary records
nserts of dependent records

Ensuring data integrity through updates

CUSTOMER ORDER
(PK=CustomerlD) | (FK=CustomerID)

Relational

Restricted Update: A customer ID can only be deleted if it is not found in ORDER table. Integrity 1S

CREATE TABLE CustomerT enforced via

(CustomerlD INTEGER DEFAULT ‘999 NOT NULL,

CustomerName VARCHAR(40) NOT NULL, the prl mary-

CONSTRAINT Customer_PK PRIMARY KEY (CustomerID). key to forel gn-

ON UPDATE RESTRICT);
key match

Cascaded Update: Changing a customer ID in the CUSTOMER table will result in that
value changing in the ORDER table to match.

... ON UPDATE CASCADE);

Set Null Update: When a customer ID is changed, any customer ID in the ORDER table
that matches the old customer ID is set to NULL.

... ON UPDATE SET NULL);

Set Default Update: When a customer ID is changed, any customer |ID in the ORDER
tables that matches the old customer ID is set to a predefined default value.

... ON UPDATE SET DEFAULT);

CHANGING TABLES

ALTER TABLE statement allows you to
change column specifications:

ALTER TABLE table name alter table action;

Ta ble ACtI ons. ADD [COLUMN] column_definition

ALTER [COLUMN] column_name SET DEFAULT default-value
ALTER [COLUMN] column_name DROP DEFAULT

DROP [COLUMN] column_name [RESTRICT] [CASCADE]
ADD table_constraint

Example (adding a new column with a default value).

ALTER TABLE CUSTOMER_T
ADD COLUMN CustomerType VARCHAR2 (10) DEFAULT “Commercial”;

REMOVING TABLES

DROP TABLE statement allows you to
remove tables from your schema:

DROP TABLE CUSTOMER_T

INSERT STATEMENT

Adds one or more rows to a table
Inserting into a table

INSERT INTO Customer_T VALUES
(001, ‘Contemporary Casuals’, 1355 S. Himes Blvd.’, 'Gainesville’, 'FL, 32601);

Inserting a record that has some null attributes requires

iIdentifying the fields that actually get data

INSERT INTO Product_T (ProductlID,

ProductDescription, ProductFinish, ProductStandardPrice)
VALUES (1, '‘End Table’, ‘Cherry’, 175, 8);

Inserting from another table

INSERT INTO CaCustomer_ T
SELECT * FROM Customer_T
WHERE CustomerState = "CA;

CREATING TABLES WITH IDENTITY COLUMNS

CREATE TABLE Customer_T
(CustomerlD INTEGER GENERATED ALWAYS AS IDENTITY
(START WITH 1
INCREMENT BY 1
MINVALUE 1 Introduced with SQL2008
MAXVALUE 10000
NO CYCLE),
CustomerMame VARCHARZ2(25) NOT MULL,
CustomerAddress VARCHARZ2(30),
CustomerCity VARCHARZ2(20),
CustomerState CHAR(2),
CustomerPostalCode VARCHARZ2(9),
CONSTRAINT Customer_PK PRIMARY KEY (CustomerlID);

Inserting into a table does not require explicit customer ID entry or
field list

INSERT INTO CUSTOMER_T VALUES ('Contemporary Casuals',
'1355 S. Himes Blvd.', 'Gainesville', 'FL', 32601),

DELETE STATEMENT

Removes rows from a table

Delete certaln rows

+DELETE FROM CUSTOMER_T WHERE

CUSTOMERSTATE = 'HI";
Delete all rows
+DELETE FROM CUSTOMER_T;

UPDATE STATEMENT

Modifies data in existing rows

UPDATE Product T
SET ProductStandardPrice = 775
WHERE ProductiD = 7;

MERGE STATEMENT

MERGE INTO Product_T AS PROD

USING
(SELECT ProductID, ProductDescription, ProductFinish,
ProductStandardPrice, ProductLinelD FROM Purchases_T) AS PURCH
ON (PROD.ProductID = PURCH.ProductID)
WHEN MATCHED THEN UPDATE
PROD.ProductStandardPrice = PURCH.ProductStandardPrice
WHEN NOT MATCHED THEN INSERT
(ProductID, ProductDescription, ProductFinish, ProductStandardPrice,
ProductLinelD)
VALUES(PURCH.ProductID, PURCH.ProductDescription,
PURCH.ProductFinish, PURCH.ProductStandardPrice,
PURCH.ProductLinelD);

Makes it easier to update a table...allows combination of Insert
and Update in one statement

Useful for updating master tables with new data

SCHEMA DEFINITION

Control processing/storage efficiency:
Choice of indexes
File organizations for base tables
File organizations for indexes
Data clustering

Statistics maintenance
Creating indexes

Speed up random/sequential access to base table data
Example

CREATE INDEX NAME_IDX ON CUSTOMER_T(CUSTOMERNAME)

This makes an index for the CUSTOMERNAME field of the
CUSTOMER_T table

SELECT STATEMENT

Used for queries on single or multiple tables

Clauses of the SELECT statement:

+ SELECT
List the columns (and expressions) to be returned from the query

+ FROM
Indicate the table(s) or view(s) from which data will be obtained

+ WHERE
Indicate the conditions under which a row will be included in the result

+ GROUP BY
Indicate categorization of results
- HAVING
Indicate the conditions under which a category (group) will be included

+ ORDER BY
Sorts the result according to specified criteria

SELECT EXAMPLE

Find products with standard price less than
$275

TABLE 6-3 Comparison
Operators in SQL

SELECT ProductDescription, ProductStandardPrice Operator ~ Meaning

FROM Product_T Equal to
WHERE ProductStandardPrice < 275;

Greater than

Greater than
or equal to

Less than

Less than or
equal to

Not equal to

Comparison Operators in SQL Not equal to

SELECT EXAMPLE USING ALIAS

Alias Is an alternative column or table name

SELECT CUST.CUSTOMERNAME AS

NAME, CUST.CUSTOMERADDRESS
FROM CUSTOMER_V CUST
WHERE NAME = ‘Home Furnishings’;

SELECT EXAMPLE USING A FUNCTION

Using the COUNT aggregate function to find
totals

SELECT COUNT(*) FROM ORDERLINE_T

WHERE ORDERID = 1004;

Note: With aggregate functions you can’t have single-
valued columns included in the SELECT clause,
unless they are included in the GROUP BY clause.

SELECT EXAMPLE-BOOLEAN OPERATORS

% AND, OR, and NOT Operators for customizing conditions
iIn WHERE clause

SELECT ProductDescription, ProductFinish, ProductStandardPrice

FROM Product T
WHERE ProductDescription LIKE ‘%Desk’

OR ProductDescription LIKE ‘%Table’
AND ProductStandardPrice > 300

Note: The LIKE operator allows you to compare strings using
wildcards. For example, the % wildcard in *%Desk’ indicates

that all strings that have any number of characters preceding
the word "Desk” will be allowed.

Boolean query A without use of parentheses

SELECT ProductDescription, ProductFinish, ProductStandardPrice
FROM Product_T
WHERE ProductDescription LIKE '%Desk’
OR ProductDescription LIKE ‘%Table’
AND ProductStandardPrice > 300;

All Tables By default,
. processing order
e
Procest)AND \ Of BOOIGan
Products with Produ?tHDEchript@on Operators IS NOT;
R/ R e) g then AND, then
WHERE StandardPrice >$3
ProductDescription t = s OR
| LIKE ‘% Desk’
Step 2

Process OR

SELECT EXAMPLE-BOOLEAN OPERATORS

% With parentheses...these override the normal
precedence of Boolean operators

SELECT ProductDescription, ProductFinish, ProductStandardPrice
FROM Product_T;
WHERE (ProductDescription LIKE ‘% Desk’

OR ProductDescription LIKE "%Table’)
AND ProductStandardPrice > 300

With parentheses, you can override normal precedence rules. In
this case parentheses make the OR take place before the AND.

Boolean query B with use of parentheses

Step 1

PfoceSS OR » SELECT ProductDescription, ProductFinish, ProductStandardPrice

Products W|th
StandardPrice > $300

=/

FROM Product_T;

WHERE (ProductDescription LIKE ‘% Desk’
OR ProductDescription LIKE % Table’)
AND ProductStandardPrice > 300;

Process AND

WHERE
Result of first
process
AND

StandardPrice >$300
ﬁ

SORTING RESULTS WiTH ORDER BY cLAUSE

Sort the results first by STATE, and within a state
by the CUSTOMER NAME

SELECT CustomerName, CustomerCity, CustomerState

FROM Customer T
WHERE CustomerState IN ('FL’, 'TX’, ‘CA’, 'HI")
ORDER BY CustomerState, CustomerName;

Note: The IN operator in this example allows you to include
rows whose CustomerState value is either FL, TX, CA, or HI. It
Is more efficient than separate OR conditions.

CATEGORIZING RESULTS USING GROUP BY
CLAUSE

For use with aggregate functions

Scalar aggregate: single value returned from SQL query with
aggregate function

Vector aggregate: multiple values returned from SQL query with
aggregate function (via GROUP BY)

SELECT CustomerState, COUNT (CustomerState)
FROM Customer T

GROUP BY CustomerState;

You can use single-value fields with aggregate functions
if they are included in the GROUP BY clause

QUALIFYING RESULTS BY CATEGORIES
USING THE HAVING CLAUSE

For use with GROUP BY

SELECT CustomerState, COUNT (CustomerState)

FROM Customer T
GROUP BY CustomerState
HAVING COUNT (CustomerState) > 1;

Like a WHERE clause, but it operates on groups
(categories), not on individual rows. Here, only
those groups with total numbers greater than 1
will be included in final result.

A QUERY WITH BOTH WHERE AND
HAVING

SELECT ProductFinish, AVG (ProductStandardPrice)
FROM Product T
WHERE ProductFinish IN (‘Cherry’, 'Natural Ash’, ‘Natural Maple’,
"White Ash’)
GROUP BY ProductFinish

HAVING AVG (ProductStandardPrice) < 750
ORDER BY ProductFinish;

Productil - | ProductDescriptial - | ProductFinist ~ | ProductStandardPric - | ProductLinelD - |~
1 End Table Cherry 5175.00
2 Coffee Table Matural Ash $200.00
2 Computer Dask Matural Ash £375.00
4 Entertainment Cente MNatural Maple $650.00
5 Writers Desk Cherry $335.00
6 8-Drawer Desk White Ash $750.00
7 Dining Table Matural Ash $800.00
8 Computer Desk Walnut 5250.00

Result:

PRODUCTFINISH AVG(PRODUCTSTANDARDPRICE)
Cherry 250
Natural Ash 458.333333

Natural Maple 650

WOk R R R

USING AND DEFINING VIEWS

Views provide users controlled access to tables
Base Table-table containing the raw data
Dynamic View

A “virtual table” created dynamically upon request by a user

No data actually stored; instead data from base table made available
to user

Based on SQL SELECT statement on base tables or other views
Materialized View

Copy or replication of data

Data actually stored

Must be refreshed periodically to match corresponding base tables

SAMPLE CREATE VIEW

CREATE VIEW ExpensiveStuff_V
AS

SELECT ProductID, ProductDescription, ProductStandardPrice
FROM Product T

WHERE ProductStandardPrice > 300

WITH CHECK OPTION;

View has a name.
View IS based on a SELECT statement.
CHECK_OPTION works only for updateable

views and prevents updates that would create
rows not included in the view.

ADVANTAGES OF VIEWS

Simplify query commands

Assist with data security (but don't rely on
views for security, there are more important
security measures)

Enhance programming productivity
Contain most current base table data
Use little storage space

Provide customized view for user
Establish physical data independence

DISADVANTAGES OF VIEWS

Use processing time each time view Is
referenced

May or may not be directly updateable

