
(ADVANCED) DATABASE SYSTEMS

(DATABASE MANAGEMENTS)

PROF. DR. HASAN HÜSEYİN BALIK

(6TH WEEK)

4. OUTLINE

4. Implementation

4.1 Introduction to SQL

4.2 Advanced SQL

4.3 Database Application Development

4.4 Data Warehousing

4.1 INTRODUCTİON TO SQL

OBJECTİVES

 Define terms

 Interpret history and role of SQL

 Define a database using SQL data definition

language

 Write single table queries using SQL

 Establish referential integrity using SQL

 Discuss SQL:1999 and SQL:2011 standards

SQL OVERVIEW

 Structured Query Language – often pronounced
“Sequel”

 The standard for relational database
management systems (RDBMS)

 RDBMS: A database management system that
manages data as a collection of tables in which
all relationships are represented by common
values in related tables

HISTORY OF SQL

 1970–E. F. Codd develops relational database concept

 1974-1979–System R with Sequel (later SQL) created at
IBM Research Lab

 1979–Oracle markets first relational DB with SQL

 1981 – SQL/DS first available RDBMS system on DOS/VSE

 Others followed: INGRES (1981), IDM (1982), DG/SGL
(1984), Sybase (1986)

 1986–ANSI SQL standard released

 1989, 1992, 1999, 2003, 2006, 2008, 2011–Major ANSI
standard updates

 Current–SQL is supported by most major database vendors

PURPOSE OF SQL STANDARD

 Specify syntax/semantics for data definition and
manipulation

 Define data structures and basic operations

 Enable portability of database definition and
application modules

 Specify minimal (level 1) and complete (level 2)
standards

 Allow for later growth/enhancement to standard
(referential integrity, transaction management,
user-defined functions, extended join
operations, national character sets)

BENEFITS OF A STANDARDIZED RELATIONAL

LANGUAGE

Reduced training costs

Productivity

Application portability

Application longevity

Reduced dependence on a single vendor

Cross-system communication

SQL ENVIRONMENT

 Catalog
 A set of schemas that constitute the description of a database

 Schema
 The structure that contains descriptions of objects created by a user

(base tables, views, constraints)

 Data Definition Language (DDL)
 Commands that define a database, including creating, altering, and

dropping tables and establishing constraints

 Data Manipulation Language (DML)
 Commands that maintain and query a database

 Data Control Language (DCL)
 Commands that control a database, including administering

privileges and committing data

A simplified schematic of a typical SQL environment, as

described by the SQL: 2011 standard

DDL, DML, DCL, and the database development process

SQL DATABASE DEFINITION

 Data Definition Language (DDL)

 Major CREATE statements:

 CREATE SCHEMA–defines a portion of the

database owned by a particular user

 CREATE TABLE–defines a new table and its

columns

 CREATE VIEW–defines a logical table from one or

more tables or views

 Other CREATE statements: CHARACTER SET,

COLLATION, TRANSLATION, ASSERTION, DOMAIN

SQL DATA TYPES

STEPS IN TABLE CREATION

1. Identify data types for attributes

2. Identify columns that can and cannot be null

3. Identify columns that must be unique (candidate keys)

4. Identify primary key–foreign key mates

5. Determine default values

6. Identify constraints on columns (domain

specifications)

7. Create the table and associated indexes

General syntax for CREATE TABLE statement used in

data definition language

THE FOLLOWING SLIDES CREATE TABLES FOR

THIS ENTERPRISE DATA MODEL

SQL database definition commands for PVF Company

(Oracle 12c)

Overall table

definitions

Defining attributes and their data types

Non-nullable specification

Identifying primary key

Primary keys

can never have

NULL values

Non-nullable specifications

Primary key

Some primary keys are composite–

composed of multiple attributes

Default value

Domain constraint

Controlling the values in attributes

Primary key of

parent table

Identifying foreign keys and establishing relationships

Foreign key of dependent table

DATA INTEGRITY CONTROLS

Referential integrity–constraint that
ensures that foreign key values of a
table must match primary key values
of a related table in 1:M relationships

Restricting:

Deletes of primary records

Updates of primary records

 Inserts of dependent records

Relational

integrity is

enforced via

the primary-

key to foreign-

key match

Ensuring data integrity through updates

CHANGING TABLES

 ALTER TABLE statement allows you to

change column specifications:

 Table Actions:

 Example (adding a new column with a default value):

REMOVING TABLES

DROP TABLE statement allows you to

remove tables from your schema:

DROP TABLE CUSTOMER_T

INSERT STATEMENT

 Adds one or more rows to a table

 Inserting into a table

 Inserting a record that has some null attributes requires
identifying the fields that actually get data

 Inserting from another table

CREATING TABLES WITH IDENTITY COLUMNS

Inserting into a table does not require explicit customer ID entry or
field list

INSERT INTO CUSTOMER_T VALUES ('Contemporary Casuals',
'1355 S. Himes Blvd.', 'Gainesville', 'FL', 32601);

Introduced with SQL:2008

DELETE STATEMENT

Removes rows from a table

Delete certain rows

DELETE FROM CUSTOMER_T WHERE

CUSTOMERSTATE = 'HI';

Delete all rows

DELETE FROM CUSTOMER_T;

UPDATE STATEMENT

Modifies data in existing rows

MERGE STATEMENT

Makes it easier to update a table…allows combination of Insert
and Update in one statement

Useful for updating master tables with new data

SCHEMA DEFINITION

 Control processing/storage efficiency:

 Choice of indexes

 File organizations for base tables

 File organizations for indexes

 Data clustering

 Statistics maintenance

 Creating indexes

 Speed up random/sequential access to base table data

 Example

 CREATE INDEX NAME_IDX ON CUSTOMER_T(CUSTOMERNAME)

 This makes an index for the CUSTOMERNAME field of the
CUSTOMER_T table

SELECT STATEMENT

 Used for queries on single or multiple tables

 Clauses of the SELECT statement:
 SELECT

 List the columns (and expressions) to be returned from the query

 FROM

 Indicate the table(s) or view(s) from which data will be obtained

 WHERE

 Indicate the conditions under which a row will be included in the result

 GROUP BY

 Indicate categorization of results

 HAVING

 Indicate the conditions under which a category (group) will be included

 ORDER BY

 Sorts the result according to specified criteria

SELECT EXAMPLE

 Find products with standard price less than

$275

Comparison Operators in SQL

SELECT EXAMPLE USING ALIAS

Alias is an alternative column or table name

SELECT CUST.CUSTOMERNAME AS

NAME, CUST.CUSTOMERADDRESS

FROM CUSTOMER_V CUST

WHERE NAME = ‘Home Furnishings’;

SELECT EXAMPLE USING A FUNCTION

 Using the COUNT aggregate function to find
totals

SELECT COUNT(*) FROM ORDERLINE_T

WHERE ORDERID = 1004;

Note: With aggregate functions you can’t have single-
valued columns included in the SELECT clause,
unless they are included in the GROUP BY clause.

SELECT EXAMPLE–BOOLEAN OPERATORS
 AND, OR, and NOT Operators for customizing conditions

in WHERE clause

Note: The LIKE operator allows you to compare strings using
wildcards. For example, the % wildcard in ‘%Desk’ indicates
that all strings that have any number of characters preceding
the word “Desk” will be allowed.

Boolean query A without use of parentheses

By default,

processing order

of Boolean

operators is NOT,

then AND, then

OR

SELECT EXAMPLE–BOOLEAN OPERATORS

 With parentheses…these override the normal

precedence of Boolean operators

With parentheses, you can override normal precedence rules. In

this case parentheses make the OR take place before the AND.

Boolean query B with use of parentheses

SORTING RESULTS WİTH ORDER BY CLAUSE

 Sort the results first by STATE, and within a state

by the CUSTOMER NAME

Note: The IN operator in this example allows you to include

rows whose CustomerState value is either FL, TX, CA, or HI. It

is more efficient than separate OR conditions.

CATEGORIZING RESULTS USING GROUP BY

CLAUSE

 For use with aggregate functions

 Scalar aggregate: single value returned from SQL query with

aggregate function

 Vector aggregate: multiple values returned from SQL query with

aggregate function (via GROUP BY)

You can use single-value fields with aggregate functions

if they are included in the GROUP BY clause

QUALIFYING RESULTS BY CATEGORIES

USING THE HAVING CLAUSE

 For use with GROUP BY

Like a WHERE clause, but it operates on groups
(categories), not on individual rows. Here, only
those groups with total numbers greater than 1
will be included in final result.

A QUERY WITH BOTH WHERE AND

HAVING

USING AND DEFINING VIEWS

 Views provide users controlled access to tables

 Base Table–table containing the raw data

 Dynamic View

 A “virtual table” created dynamically upon request by a user

 No data actually stored; instead data from base table made available

to user

 Based on SQL SELECT statement on base tables or other views

 Materialized View

 Copy or replication of data

 Data actually stored

 Must be refreshed periodically to match corresponding base tables

SAMPLE CREATE VIEW

 View has a name.

 View is based on a SELECT statement.

 CHECK_OPTION works only for updateable

views and prevents updates that would create

rows not included in the view.

ADVANTAGES OF VIEWS

 Simplify query commands

 Assist with data security (but don't rely on
views for security, there are more important
security measures)

 Enhance programming productivity

 Contain most current base table data

 Use little storage space

 Provide customized view for user

 Establish physical data independence

DISADVANTAGES OF VIEWS

Use processing time each time view is

referenced

May or may not be directly updateable

